Mustafa Germeç

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7209768/publications.pdf

Version: 2024-02-01

		361296	526166
58	962	20	27
papers	citations	h-index	g-index
FO	FO	F0	402
59	59	59	492
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Ethanol production via repeated-batch fermentation from carob pod extract by using Saccharomyces cerevisiae in biofilm reactor. Fuel, 2015, 161, 304-311.	3.4	55
2	Controlling filamentous fungi morphology with microparticles to enhanced \hat{l}^2 -mannanase production. Bioprocess and Biosystems Engineering, 2016, 39, 1391-1399.	1.7	53
3	Ethanol production from acid-pretreated and detoxified tea processing waste and its modeling. Fuel, 2018, 231, 101-109.	3.4	42
4	Bioconversion of wheat bran into high value-added products and modelling of fermentations. Industrial Crops and Products, 2019, 139, 111565.	2.5	42
5	Medium optimization and kinetic modeling for the production of Aspergillus niger inulinase. Bioprocess and Biosystems Engineering, 2020, 43, 217-232.	1.7	41
6	Effect of different fermentation strategies on \hat{l}^2 -mannanase production in fed-batch bioreactor system. 3 Biotech, 2017, 7, 77.	1.1	36
7	Biofilm reactors for value-added products production: An in-depth review. Biocatalysis and Agricultural Biotechnology, 2020, 27, 101662.	1.5	36
8	Evaluation of carbon sources for the production of inulinase by Aspergillus niger A42 and its characterization. Bioprocess and Biosystems Engineering, 2019, 42, 1993-2005.	1.7	35
9	Inulinase production and mathematical modeling from carob extract by using <i>Aspergillus niger</i> . Biotechnology Progress, 2020, 36, e2919.	1.3	32
10	Microparticle-enhanced polygalacturonase production by wild type Aspergillus sojae. 3 Biotech, 2017, 7, 361.	1.1	29
11	Ethanol production from rice hull using <i>Pichia stipitis</i> and optimization of acid pretreatment and detoxification processes. Biotechnology Progress, 2016, 32, 872-882.	1.3	28
12	Ultrasoundâ€assisted dilute acid hydrolysis of tea processing waste for production of fermentable sugar. Biotechnology Progress, 2016, 32, 393-403.	1.3	28
13	Ethanol production from acid-pretreated and detoxified rice straw as sole renewable resource. Biomass Conversion and Biorefinery, 2018, 8, 607-619.	2.9	27
14	Microwave-assisted dilute acid pretreatment of different agricultural bioresources for fermentable sugar production. Cellulose, 2017, 24, 4337-4353.	2.4	26
15	Production and characterization of tempehs from different sources of legume by Rhizopus oligosporus. LWT - Food Science and Technology, 2020, 119, 108880.	2.5	25
16	Kinetic Modeling and Techno-economic Feasibility of Ethanol Production From Carob Extract Based Medium in Biofilm Reactor. Applied Sciences (Switzerland), 2019, 9, 2121.	1.3	24
17	Mathematical modeling of lactic acid fermentation in bioreactor with carob extract. Biocatalysis and Agricultural Biotechnology, 2018, 14, 254-263.	1.5	23
18	Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition. Cellulose, 2018, 25, 6377-6393.	2.4	23

#	Article	IF	Citations
19	Enhanced \hat{I}^2 -mannanase production from alternative sources by recombinant Aspergillus sojae. Acta Alimentaria, 2016, 45, 371-379.	0.3	22
20	βâ€Mannanase production and kinetic modeling from carob extract by using recombinant <i>Aspergillus sojae</i> . Biotechnology Progress, 2019, 35, e2885.	1.3	21
21	Application of mathematical models to ethanol fermentation in biofilm reactor with carob extract. Biomass Conversion and Biorefinery, 2020, 10, 237-252.	2.9	20
22	Effect of media sterilization and enrichment on ethanol production from carob extract in a biofilm reactor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3268-3272.	1.2	19
23	Enhancing \hat{l}^2 -mannanase production by controlling fungal morphology in the bioreactor with microparticle addition. Food and Bioproducts Processing, 2020, 121, 123-130.	1.8	19
24	Partial purification and characterization of a recombinant \hat{l}^2 -mannanase from Aspergillus fumigatus expressed in Aspergillus sojae grown on carob extract. Biomass Conversion and Biorefinery, 2020, 10, 1189-1205.	2.9	17
25	Enhanced production of Aspergillus niger inulinase from sugar beet molasses and its kinetic modeling. Biotechnology Letters, 2020, 42, 1939-1955.	1.1	16
26	Ethanol production in aÂbiofilm reactor with non-sterile carob extract media and its modeling. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2726-2734.	1.2	15
27	Dilute acid and alkaline pretreatment of spent tea leaves to determine the potential of carbon sources. Biomass Conversion and Biorefinery, 2018, 8, 529-544.	2.9	13
28	The inhibition effect of phenol on the production of <i>Aspergillus niger</i> inulinase and its modeling. Journal of Food Processing and Preservation, 2021, 45, e14522.	0.9	13
29	Effect of furfural concentration on ethanol production using ⟨i⟩Saccharomyces cerevisiae⟨/i⟩ in an immobilized cells stirredâ€tank bioreactor with glucoseâ€based medium and mathematical modeling. Journal of Food Processing and Preservation, 2021, 45, e14635.	0.9	13
30	Statistical and kinetic modeling of Aspergillus niger inulinase fermentation from carob extract and its partial concentration. Industrial Crops and Products, 2020, 156, 112866.	2.5	12
31	Ethanol production from different medium compositions of rice husk hydrolysate by using Scheffersomyces stipitis in a repeated-batch biofilm reactor and its modeling. Process Biochemistry, 2021, 100, 26-38.	1.8	12
32	Thermostability of Aspergillus niger inulinase from sugar beet molasses in the submerged fermentation and determination of its kinetic and thermodynamic parameters. Biomass Conversion and Biorefinery, 2022, 12, 3219-3227.	2.9	10
33	Solidâ€state fermentation for the production of a recombinant βâ€mannanase from <i>Aspergillus fumigatus</i> expressed in <i>Aspergillus sojae</i> grown on renewable resources. Journal of Food Processing and Preservation, 2021, 45, e14584.	0.9	10
34	Modeling of ethanol fermentation from carob extract–based medium by using Saccharomyces cerevisiae in the immobilized-cell stirred tank bioreactor. Biomass Conversion and Biorefinery, 2022, 12, 5241-5255.	2.9	9
35	Mathematical modeling of batch bioethanol generation from carob extract in the suspendedâ€cell stirredâ€tank bioreactor. International Journal of Energy Research, 2020, 44, 9021-9034.	2.2	9
36	Partial purification and characterization of Aspergillus niger inulinase produced from sugar-beet molasses in the shaking incubator and stirred-tank bioreactors. International Journal of Biological Macromolecules, 2020, 164, 3789-3799.	3.6	8

#	Article	IF	CITATIONS
37	Mannooligosaccharide production by $\hat{l}^2 \hat{a} \in \mathbb{R}$ mannanase enzyme application from coffee extract. Journal of Food Processing and Preservation, 2021, 45, e14668.	0.9	8
38	Scaleâ€up processing with different microparticle agent for βâ€mannanase production in a largeâ€scale stirred tank bioreactor. Journal of Food Processing and Preservation, 2021, 45, e14915.	0.9	8
39	Predicting the experimental data of the substrate specificity of Aspergillus niger inulinase using mathematical models, estimating kinetic constants in the Michaelisâ \in "Menten equation, and sensitivity analysis. Biomass Conversion and Biorefinery, 0 , 1 .	2.9	8
40	Kinetic modeling and sensitivity analysis of inulinase production in large-scale stirred tank bioreactor with sugar beet molasses-based medium. Biochemical Engineering Journal, 2021, 176, 108201.	1.8	8
41	Optimization of acidic hydrolysis conditions of rice husk for fermentable sugar production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3103-3108.	1.2	7
42	Scheffersomyces stipitis biofilm reactor for ethanol production from acid-pretreated/detoxified and glucose- or xylose-enriched rice husk hydrolysate under a continuous process. Biomass Conversion and Biorefinery, 2021, 11, 2909-2921.	2.9	7
43	Optimization of mannooligosaccharides production from different hydrocolloids via response surface methodology using a recombinant Aspergillus sojae βâ€mannanase produced in the microparticleâ€enhanced largeâ€scale stirred tank bioreactor. Journal of Food Processing and Preservation, 2021, 45, e14916.	0.9	7
44	Effect of pH control and aeration on inulinase production from sugarbeet molasses in a bench-scale bioreactor. Biomass Conversion and Biorefinery, 0 , 1 .	2.9	7
45	Fermentable sugars production from wheat bran and rye bran: response surface model optimization of dilute sulfuric acid hydrolysis. Environmental Technology (United Kingdom), 2022, 43, 3779-3800.	1.2	7
46	Kinetic modeling, sensitivity analysis, and techno-economic feasibility of ethanol fermentation from non-sterile carob extract-based media in Saccharomyces cerevisiae biofilm reactor under a repeated-batch fermentation process. Fuel, 2022, 324, 124729.	3.4	7
47	Implementation of flexible models to bioethanol production from carob extract–based media in a biofilm reactor. Biomass Conversion and Biorefinery, 2021, 11, 2983-2999.	2.9	5
48	Effect of process parameters and microparticle addition on polygalacturonase activity and fungal morphology of Aspergillus sojae. Biomass Conversion and Biorefinery, 2022, 12, 5329-5344.	2.9	5
49	Chemical characterization of acid-pretreated renewable resources: effect of pretreatment time. Biofuels, 2020, , 1-11.	1.4	4
50	The effects of mannanase activity on viscosity in different gums. Journal of Food Processing and Preservation, 2021, 45, e14820.	0.9	4
51	Application of Aspergillus niger inulinase production in sugar beet molasses-based medium optimized by Central Composite Design to mathematical models. Biomass Conversion and Biorefinery, $0, 1$.	2.9	3
52	Repeated-batch fermentation of Scheffersomyces stipitis in biofilm reactor for ethanol production from the detoxified and glucose- or xylose-enriched rice husk hydrolysate and its kinetic modeling. Fuel, 2022, 326, 125053.	3.4	2
53	Keçiboynuzu Ekstraktında Bulunan D-Pinitolün Çok Aşamalı Zenginleştirme Prosesi İle Konsantrasyo Gıda, 2015, , .	onu. 0:1	1
54	Predictive modeling and sensitivity analysis to estimate the experimental data of inulinase fermentation by Aspergillus niger grown on sugar beet molassesâ€based medium optimized using Plackettâ€Burman Design. Biotechnology and Applied Biochemistry, 2021, , .	1.4	1

#	Article	lF	CITATIONS
55	Optimization of ultrasound-assisted dilute acid hydrolysis conditions of tea processing waste. , 2016, , .		O
56	Ethanol production from carob extract by using <i> Saccharomyces cerevisiae < /i > in biofilm reactor. , 2016, , .</i>		O
57	Ethanol production from carob extract by using & https://www.cerevisiae.cerev		O
58	Optimization of ultrasound-assisted dilute acid hydrolysis conditions of tea processing waste. , 2017, , .		0