Raymond Panneton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7208990/publications.pdf

Version: 2024-02-01

43 papers 2,127 citations

257101 24 h-index 264894 42 g-index

46 all docs

46 docs citations

46 times ranked

872 citing authors

#	Article	IF	CITATIONS
1	A mixed displacement-pressure formulation for poroelastic materials. Journal of the Acoustical Society of America, 1998, 104, 1444-1452.	0.5	253
2	Acoustical determination of the parameters governing viscous dissipation in porous media. Journal of the Acoustical Society of America, 2006, 119 , 2027-2040.	0.5	149
3	Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials. Journal of the Acoustical Society of America, 1996, 100, 346-354.	0.5	140
4	Acoustical determination of the parameters governing thermal dissipation in porous media. Journal of the Acoustical Society of America, 2008, 123, 814-824.	0.5	127
5	Enhanced weak integral formulation for the mixed (u_,p_) poroelastic equations. Journal of the Acoustical Society of America, 2001, 109, 3065-3068.	0.5	125
6	Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube. Applied Acoustics, 2010, 71, 506-509.	1.7	123
7	An efficient finite element scheme for solving the three-dimensional poroelasticity problem in acoustics. Journal of the Acoustical Society of America, 1997, 101, 3287-3298.	0.5	105
8	Bottom-up approach for microstructure optimization of sound absorbing materials. Journal of the Acoustical Society of America, 2008, 124, 940-948.	0.5	100
9	Comments on the limp frame equivalent fluid model for porous media. Journal of the Acoustical Society of America, 2007, 122, EL217-EL222.	0.5	86
10	Boundary conditions for the weak formulation of the mixed (u,p) poroelasticity problem. Journal of the Acoustical Society of America, 1999, 106, 2383-2390.	0.5	81
11	Periodic unit cell reconstruction of porous media: Application to open-cell aluminum foams. Journal of Applied Physics, 2007, 101, 113538.	1.1	75
12	Transfer matrix method applied to the parallel assembly of sound absorbing materials. Journal of the Acoustical Society of America, 2013, 134, 4648-4658.	0.5	73
13	New approach for the measurement of damping properties of materials using the Oberst beam. Review of Scientific Instruments, 2004, 75, 2569-2574.	0.6	70
14	Dynamic viscous permeability of an open-cell aluminum foam: Computations versus experiments. Journal of Applied Physics, 2008, 103, .	1.1	70
15	Polynomial relations for quasi-static mechanical characterization of isotropic poroelastic materials. Journal of the Acoustical Society of America, 2001, 110, 3032-3040.	0.5	50
16	Microstructure based model for sound absorption predictions of perforated closed-cell metallic foams. Journal of the Acoustical Society of America, 2010, 128, 1766-1776.	0.5	48
17	Wideband characterization of the complex wave number and characteristic impedance of sound absorbers. Journal of the Acoustical Society of America, 2010, 128, 2868-2876.	0.5	41
18	Behavioral criterion quantifying the effects of circumferential air gaps on porous materials in the standing wave tube. Journal of the Acoustical Society of America, 2004, 116, 344-356.	0.5	36

#	Article	IF	Citations
19	Behavioral criterion quantifying the edge-constrained effects on foams in the standing wave tube. Journal of the Acoustical Society of America, 2003, 114, 1980-1987.	0.5	33
20	Complement to standard method for measuring normal incidence sound transmission loss with three microphones. Journal of the Acoustical Society of America, 2012, 131, EL216-EL222.	0.5	33
21	A microstructure material design for low frequency sound absorption. Applied Acoustics, 2018, 136, 86-93.	1.7	31
22	A general wave decomposition formula for the measurement of normal incidence sound transmission loss in impedance tube. Journal of the Acoustical Society of America, 2009, 125, 2083-2090.	0.5	28
23	Influence of Porosity, Fiber Radius and Fiber Orientation on the Transport and Acoustic Properties of Random Fiber Structures. Acta Acustica United With Acustica, 2017, 103, 1050-1063.	0.8	28
24	Acoustical model for Shoddy-based fiber sound absorbers. Textile Reseach Journal, 2013, 83, 1356-1370.	1.1	27
25	The effects of multilayer sound-absorbing treatments on the noise field inside a plate backed cavity. Noise Control Engineering Journal, 1996, 44, 235.	0.2	24
26	Three-dimensional reconstruction of a random fibrous medium: Geometry, transport, and sound absorbing properties. Journal of the Acoustical Society of America, 2017, 141, 4768-4780.	0.5	20
27	How reproducible are methods to measure the dynamic viscoelastic properties of poroelastic media?. Journal of Sound and Vibration, 2018, 428, 26-43.	2.1	20
28	On the dynamic viscous permeability tensor symmetry. Journal of the Acoustical Society of America, 2008, 124, EL210-EL217.	0.5	19
29	Coupling transfer matrix method to finite element method for analyzing the acoustics of complex hollow body networks. Applied Acoustics, 2011, 72, 962-968.	1.7	14
30	Prediction of effective properties and sound absorption of random close packings of monodisperse spherical particles: Multiscale approach. Journal of the Acoustical Society of America, 2019, 145, 3606-3624.	0.5	14
31	Vibration and sound radiation of a cylindrical shell under a circumferentially moving load. Journal of the Acoustical Society of America, 1995, 98, 2165-2173.	0.5	12
32	Acoustic methods for measuring the porosities of porous materials incorporating dead-end pores. Journal of the Acoustical Society of America, 2013, 133, 2136-2145.	0.5	11
33	Comparison between parallel transfer matrix method and admittance sum method. Journal of the Acoustical Society of America, 2014, 136, EL90-EL95.	0.5	11
34	Effective fiber diameter for modeling the acoustic properties of polydisperse fiber networks. Journal of the Acoustical Society of America, 2017, 141, EL96-EL101.	0.5	11
35	Characterization and development of periodic acoustic metamaterials using a transfer matrix approach. Applied Acoustics, 2022, 185, 108381.	1.7	11
36	Development and validation of a model predicting the performance of hard or absorbent parallel noise barriers Journal of the Acoustical Society of Japan (E), 1993, 14, 251-258.	0.1	8

3

#	ARTICLE	IF	CITATIONS
37	Normal incidence sound transmission loss evaluation by upstream surface impedance measurements. Journal of the Acoustical Society of America, 2009, 125, 1490-1497.	0.5	5
38	Thermoviscous-acoustic metamaterials to damp acoustic modes in complex shape geometries at low frequencies. Journal of the Acoustical Society of America, 2021, 150, 2272-2281.	0.5	5
39	Prediction of the acoustic behavior of a parallel assembly of hollow cylinders. Applied Acoustics, 2016, 102, 100-107.	1.7	3
40	Acoustic critical depth and asymptotic absorption of dissipative fluids. Journal of the Acoustical Society of America, 2019, 145, EL367-EL371.	0.5	3
41	Experimental Validation of an Acoustical Micro-Macro Model for Random Hollow Fibre Structures. Acta Acustica United With Acustica, 2019, 105, 240-247.	0.8	2
42	Method for controlling boundary condition effects on the measurement of acoustic properties of small samples in tubes. Review of Scientific Instruments, 2021, 92, 044906.	0.6	0
43	Experimental validation of a finite element model predicting the vibroâ€acoustic behavior of doubleâ€plate structures with Biot poroelastic materials. Journal of the Acoustical Society of America, 1997, 101, 3064-3064.	0.5	0