Vladimir I Sobolev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7208936/publications.pdf Version: 2024-02-01

VIADIMIR | SOBOLEV

#	Article	IF	CITATIONS
1	Generation of active oxygen species on solid surfaces. Opportunity for novel oxidation technologies over zeolites. Catalysis Today, 1998, 41, 365-385.	4.4	466
2	lron complexes in zeolites as a new model of methane monooxygenase. Reaction Kinetics and Catalysis Letters, 1997, 61, 251-258.	0.6	149
3	Copper on carbon materials: stabilization by nitrogen doping. Journal of Materials Chemistry A, 2017, 5, 10574-10583.	10.3	103
4	Highly Stable Singleâ€Atom Catalyst with Ionic Pd Active Sites Supported on Nâ€Doped Carbon Nanotubes for Formic Acid Decomposition. ChemSusChem, 2018, 11, 3724-3727.	6.8	99
5	Ag-Based Catalysts in Heterogeneous Selective Oxidation of Alcohols: A Review. Catalysts, 2018, 8, 447.	3.5	58
6	"Doubleâ€Peak―Catalytic Activity of Nanosized Gold Supported on Titania in Gasâ€Phase Selective Oxidation of Ethanol. ChemCatChem, 2010, 2, 1535-1538.	3.7	53
7	Low temperature gas-phase oxidation of ethanol over Au/TiO2. Applied Catalysis A: General, 2012, 433-434, 88-95.	4.3	52
8	Biomimetic oxidation on Fe complexes in zeolites. Studies in Surface Science and Catalysis, 1996, , 493-502.	1.5	38
9	Silica-supported silver catalysts modified by cerium/manganese oxides for total oxidation of formaldehyde. Applied Catalysis A: General, 2013, 467, 519-529.	4.3	38
10	Room-temperature oxidation of hydrocarbons over FeZSM-5 zeolite. Studies in Surface Science and Catalysis, 2000, , 875-880.	1.5	33
11	Gold catalysts supported on nanostructured Ce–Al–O mixed oxides prepared by organic sol–gel. Applied Catalysis B: Environmental, 2012, 115-116, 117-128.	20.2	32
12	Effect of transition metal oxide additives on the activity of an Ag/SiO2 catalyst in carbon monoxide oxidation. Kinetics and Catalysis, 2013, 54, 487-491.	1.0	28
13	Silica-supported silver-containing OMS-2 catalysts for ethanol oxidative dehydrogenation. Catalysis Today, 2016, 278, 164-173.	4.4	27
14	MoVNbTe Mixed Oxides as Efficient Catalyst for Selective Oxidation of Ethanol to Acetic Acid. ChemCatChem, 2011, 3, 1143-1145.	3.7	26
15	Anomalously Low Bond Energy of Surface Oxygen on FeZSM-5 Zeolite. Mendeleev Communications, 1991, 1, 29-30.	1.6	25
16	Hydrogen Production from Formic Acid over Au Catalysts Supported on Carbon: Comparison with Au Catalysts Supported on SiO2 and Al2O3. Catalysts, 2019, 9, 376.	3.5	24
17	Generation of Reactive Oxygen Species on Au/TiO ₂ after Treatment with Hydrogen: Testing the Link to Ethanol Lowâ€Temperature Oxidation. ChemCatChem, 2011, 3, 1422-1425.	3.7	22
18	Co/multi-walled carbon nanotubes as highly efficient catalytic nanoreactor for hydrogen production from formic acid. International Journal of Hydrogen Energy, 2020, 45, 19420-19430.	7.1	21

VLADIMIR I SOBOLEV

#	Article	IF	CITATIONS
19	Heterogeneous catalytic oxidative conversion of ethane to ethylene. Catalysis in Industry, 2015, 7, 104-110.	0.7	20
20	Low-Temperature Propylene Epoxidation Activity of CuO–CeO ₂ Catalyst with CO + O ₂ : Role of Metal–Support Interaction on the Reducibility and Catalytic Property of CuO _{<i>x</i>} Species. Journal of Physical Chemistry C, 2020, 124, 14131-14146.	3.1	20
21	On the origin of the non-faradaic electrochemical modification of catalytic activity (NEMCA) phenomena. Oxygen isotope exchange on Pt electrode in cell with solid oxide electrolyte. Catalysis Letters, 1993, 18, 153-164.	2.6	19
22	Efficient cleavage of cumene hydroperoxide over HUSY zeolites: The role of BrÃ,nsted acidity. Applied Catalysis A: General, 2008, 336, 29-34.	4.3	19
23	Selective oxidation of alcohols over Si3N4-supported silver catalysts. Kinetics and Catalysis, 2012, 53, 477-481.	1.0	19
24	Single Au Atoms on the Surface of N-Free and N-Doped Carbon: Interaction with Formic Acid and Methanol Molecules. Topics in Catalysis, 2019, 62, 508-517.	2.8	19
25	Nitrogen Doped Carbon Nanotubes and Nanofibers for Green Hydrogen Production: Similarities in the Nature of Nitrogen Species, Metal–Nitrogen Interaction, and Catalytic Properties. Energies, 2019, 12, 3976.	3.1	19
26	Catalytic epoxidation of propylene with CO/O2 over Au/TiO2. Applied Catalysis A: General, 2014, 476, 197-203.	4.3	18
27	Hydroxylation of aromatic compounds with nitrous oxide. New possibilities of oxidative catalysis on zeolites. Russian Chemical Reviews, 1992, 61, 1130-1139.	6.5	16
28	Role of vanadium species in the selective oxidation of ethanol on V2O5/TiO2 catalysts. Kinetics and Catalysis, 2013, 54, 730-734.	1.0	15
29	Quasi-Catalytic Identification of Intermediates in the Oxidation of Propene to Acrolein over a Multicomponent Bi–Mo Catalyst. ACS Catalysis, 2018, 8, 1173-1177.	11.2	15
30	Facile mechanochemical synthesis of Co@NC catalysts for oxidative esterification of benzyl alcohol with methanol. Catalysis Communications, 2020, 137, 105952.	3.3	15
31	Oxidation, oxidative esterification and ammoxidation of acrolein over metal oxides: Do these reactions include nucleophilic acyl substitution?. Catalysis Today, 2017, 279, 90-94.	4.4	14
32	New Multicomponent MoVSbNbCeO _x /SiO ₂ Catalyst with Enhanced Catalytic Activity for Oxidative Dehydrogenation of Ethane to Ethylene. ChemCatChem, 2020, 12, 4149-4159.	3.7	14
33	Rate of14N2 desorption from the surfaces of nitrides in the presence and absence of15N2 in the gas phase. Reaction Kinetics and Catalysis Letters, 1985, 29, 433-441.	0.6	12
34	Room temperature reduction of N2O by CO over Au/TiO2. Catalysis Communications, 2012, 18, 147-150.	3.3	12
35	Location, stability, and reactivity of oxygen species generated by N2O decomposition over Fe-ZSM-5 and Fe-Beta zeolites. Journal of Molecular Catalysis A, 2011, 347, 22-27.	4.8	11
36	Liquid versus gas phase dehydrogenation of formic acid over Co@N-doped carbon materials. The role of single atomic sites. Molecular Catalysis, 2021, 504, 111457.	2.0	10

VLADIMIR I SOBOLEV

#	Article	IF	CITATIONS
37	Study of hydrogen isotope exchange on calcium, strontium and barium hydrides. Reaction Kinetics and Catalysis Letters, 1985, 29, 443-450.	0.6	9
38	Gas phase epoxidation of propylene with CO/O2 mixture on Au/TiO2. Catalysis Communications, 2013, 40, 103-105.	3.3	9
39	FTIR study of β-picoline and pyridine-3-carbaldehyde transformation on V–Ti–O catalysts. The effect of sulfate content on β-picoline oxidation into nicotinic acid. Journal of Molecular Catalysis A, 2013, 380, 118-130.	4.8	8
40	Selective gas-phase oxidation of ethanol by molecular oxygen over oxide and gold-containing catalysts. Catalysis in Industry, 2012, 4, 247-252.	0.7	7
41	Oxidative and non-oxidative degradation of C1–C3 carboxylic acids over V2O5/TiO2 and MoVTeNb oxides: A comparative study. Applied Catalysis A: General, 2013, 466, 45-50.	4.3	7
42	The Role of Support in Formic Acid Decomposition on Gold Catalysts. Energies, 2019, 12, 4198.	3.1	7
43	Multicomponent MoVSbNbGdOx/SiO2 catalyst in oxidative dehydrogenation of ethane: Effect of Gd on catalytic properties. Applied Catalysis A: General, 2022, 633, 118536.	4.3	7
44	Promoting effect of 4-dimethylaminopyridine on selective oxidation of benzyl alcohol over MoVTeNb mixed oxides. Catalysis Communications, 2018, 117, 49-52.	3.3	6
45	Catalysts Cu/ZSM-5 for N2O decomposition obtained with copper complexes of various structures. Catalysis Communications, 2020, 144, 106072.	3.3	6
46	Oxidative Dehydrogenation of 1-Butene to 1,3-Butadiene over a Multicomponent Bismuth Molybdate Catalyst: Influence of C3–C4 Hydrocarbons. Catalysis Letters, 2017, 147, 310-317.	2.6	5
47	Direct Conversion of Methanol Into Dimethoxymethane and Methyl Formate by Controlled Oxidation. Mechanistic Aspects. Advanced Chemistry Letters, 2013, 1, 280-285.	0.1	5
48	Ethanol Dehydrogenation to Acetaldehyde over Co@N-Doped Carbon. Catalysts, 2021, 11, 1411.	3.5	5
49	Oxygen isotope exchange over a Pt electrode in a cell with solid oxide electrolyte. Reaction Kinetics and Catalysis Letters, 1992, 47, 327-331.	0.6	4
50	Gas-phase Oxidation of Alcohols with O2 and N2O Catalyzed by Au/TiO2: A Comparative Study. Catalysis Letters, 2015, 145, 583-588.	2.6	4
51	Effect of pressure on the oxidative conversion of ethane on VMoTeNbO catalyst. Russian Journal of Applied Chemistry, 2016, 89, 1786-1790.	0.5	4
52	Effect of SiO2 on the physicochemical and catalytic properties of VMoTeNbĐž catalyst in oxidative conversion of ethane. Russian Journal of Applied Chemistry, 2016, 89, 1279-1285.	0.5	4
53	Cucurbit[6]uril as a co-catalyst forÂhydrogen production from formic acid. Materials Today Energy, 2022, 26, 100998.	4.7	4
54	Structural features of promoted MoVTeNbO catalysts for the oxidative dehydrogenation of ethane. Kinetics and Catalysis, 2015, 56, 788-795.	1.0	3

VLADIMIR I SOBOLEV

#	Article	IF	CITATIONS
55	Properties of a Multicomponent MoVSbNbCeOx/SiO2 Catalyst in the Oxidative Dehydrogenation of Ethane to Ethylene. Kinetics and Catalysis, 2021, 62, 315-327.	1.0	3
56	Gas-phase oxidation of alcohols with dioxygen over an Au/TiO2 catalyst: The role of reactive oxygen species. Kinetics and Catalysis, 2015, 56, 343-346.	1.0	2
57	Oxidative conversion of ethane over VMoTeNb oxide catalyst. Catalysis in Industry, 2016, 8, 112-115.	0.7	2
58	Oxidative dehydrogenation of ethane on VMoTeNbО/Al–Si–O catalysts: Effect of the support on the physicochemical and catalytic properties. Russian Journal of Applied Chemistry, 2017, 90, 1136-1142.	0.5	2
59	Processing of Oil Refinery Gases: Oxidative Dehydrogenation of the Ethane–Ethylene Fraction. Russian Journal of Applied Chemistry, 2018, 91, 977-980.	0.5	2
60	Prospects for Conversion of Refinery Gas to High-Octane Oxygen-Containing Components of Motor Fuels. Catalysis in Industry, 2018, 10, 115-117.	0.7	2
61	Gas-phase oxidation of propylene into acetone on a V2O5/TiO2 catalyst: Effect of pressure and role of water. Russian Journal of Applied Chemistry, 2017, 90, 1439-1442.	0.5	1
62	Main Routes of Ethanol Conversion Under Aerobic/Anaerobic Conditions Over Ag-Containing Zirconium Phosphate Catalyst. Current Organic Synthesis, 2017, 14, 389-393.	1.3	1
63	Oxidative Transformations of Ethane and Ethylene on VMoTeNbO Catalysts. Russian Journal of Applied Chemistry, 2019, 92, 122-127.	0.5	0
64	Oxidative Dehydrogenation of Ethane on VMoTeNbĐž/SiO2 Catalysts and the Effect of the Initial Support Compound on Their Physicochemical and Catalytic Properties. Catalysis in Industry, 2020, 12, 226-234.	0.7	0