
Brigitta Loretz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7208467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoâ€inâ€Microparticles for Aerosol Delivery of Antibioticâ€Loaded, Fucoseâ€Derivatized, and Macrophageâ€Targeted Liposomes to Combat Mycobacterial Infections: In Vitro Deposition, Pulmonary Barrier Interactions, and Targeted Delivery. Advanced Healthcare Materials, 2022, 11, e2102117.	3.9	11
2	Models using native tracheobronchial mucus in the context of pulmonary drug delivery research: Composition, structure and barrier properties. Advanced Drug Delivery Reviews, 2022, 183, 114141.	6.6	17
3	Leaky gut model of the human intestinal mucosa for testing siRNA-based nanomedicine targeting JAK1. Journal of Controlled Release, 2022, 345, 646-660.	4.8	10
4	Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Advanced Drug Delivery Reviews, 2021, 170, 44-70.	6.6	10
5	A pulmonary mucus surrogate for investigating antibiotic permeation and activity against <i>Pseudomonas aeruginosa</i> biofilms. Journal of Antimicrobial Chemotherapy, 2021, 76, 1472-1479.	1.3	7
6	A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate <i>Pseudomonas aeruginosa</i> Biofilms. Advanced Science, 2021, 8, e2004369.	5.6	34
7	Surfactant-Free Glibenclamide Nanoparticles: Formulation, Characterization and Evaluation of Interactions with Biological Barriers. Pharmaceutical Research, 2021, 38, 1081-1092.	1.7	7
8	Spray-dried lactose-leucine microparticles for pulmonary delivery of antimycobacterial nanopharmaceuticals. Drug Delivery and Translational Research, 2021, 11, 1766-1778.	3.0	16
9	Drug delivery for fighting infectious diseases: a global perspective. Drug Delivery and Translational Research, 2021, 11, 1316-1322.	3.0	6
10	Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 2021, 5, 726-749.	13.8	439
11	Drug delivery to the inflamed intestinal mucosa – targeting technologies and human cell culture models for better therapies of IBD. Advanced Drug Delivery Reviews, 2021, 175, 113828.	6.6	29
12	Analysis and Optimization of Two Film-Coated Tablet Production Processes by Computer Simulation: A Case Study. Processes, 2021, 9, 67.	1.3	2
13	Systematic Analysis of Composition, Interfacial Performance and Effects of Pulmonary Surfactant Preparations on Cellular Uptake and Cytotoxicity of Aerosolized Nanomaterials. Small Science, 2021, 1, 2100067.	5.8	6
14	Co-Delivery of mRNA and pDNA Using Thermally Stabilized Coacervate-Based Core-Shell Nanosystems. Pharmaceutics, 2021, 13, 1924.	2.0	11
15	Nanoparticle Targeting to Scalp Hair Follicles: NewÂPerspectives for a Topical Therapy for Alopecia Areata. Journal of Investigative Dermatology, 2020, 140, 243-246.e5.	0.3	7
16	Tofacitinib Loaded Squalenyl Nanoparticles for Targeted Follicular Delivery in Inflammatory Skin Diseases. Pharmaceutics, 2020, 12, 1131.	2.0	13
17	Itaconic Acid Increases the Efficacy of Tobramycin against Pseudomonas aeruginosa Biofilms. Pharmaceutics, 2020, 12, 691.	2.0	6
18	Synthesis and Biopharmaceutical Characterization of Amphiphilic Squalenyl Derivative Based Versatile Drug Delivery Platform. Frontiers in Chemistry, 2020, 8, 584242.	1.8	6

BRIGITTA LORETZ

#	Article	IF	CITATIONS
19	Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of <i>P.â€aeruginosa</i> Biofilm Infections. Angewandte Chemie - International Edition, 2020, 59, 10292-10296.	7.2	41
20	Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of P. aeruginosa Biofilm Infections. Angewandte Chemie, 2020, 132, 10378-10382.	1.6	1
21	pH-Dependent morphology and optical properties of lysine-derived molecular biodynamers. Materials Chemistry Frontiers, 2020, 4, 905-909.	3.2	4
22	Preferential uptake of chitosan-coated PLGA nanoparticles by primary human antigen presenting cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102073.	1.7	33
23	Bioinspired Liposomes for Oral Delivery of Colistin to Combat Intracellular Infections by <i>Salmonella enterica</i> . Advanced Healthcare Materials, 2019, 8, e1900564.	3.9	45
24	Macro- and Microrheological Properties of Mucus Surrogates in Comparison to Native Intestinal and Pulmonary Mucus. Biomacromolecules, 2019, 20, 3504-3512.	2.6	45
25	Challenges and strategies in drug delivery systems for treatment of pulmonary infections. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 144, 110-124.	2.0	95
26	Polysaccharide Submicrocarrier for Improved Pulmonary Delivery of Poorly Soluble Anti-infective Ciprofloxacin: Preparation, Characterization, and Influence of Size on Cellular Uptake. Molecular Pharmaceutics, 2018, 15, 1081-1096.	2.3	19
27	A miRNA181a/NFAT5 axis links impaired T cell tolerance induction with autoimmune type 1 diabetes. Science Translational Medicine, 2018, 10, .	5.8	49
28	The role of mucus on drug transport and its potential to affect therapeutic outcomes. Advanced Drug Delivery Reviews, 2018, 124, 82-97.	6.6	218
29	Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis. Scientific Reports, 2018, 8, 16776.	1.6	59
30	Kinetics of mRNA delivery and protein translation in dendritic cells using lipid-coated PLGA nanoparticles. Journal of Nanobiotechnology, 2018, 16, 72.	4.2	49
31	Can lifecycle management safeguard innovation in the pharmaceutical industry?. Drug Discovery Today, 2018, 23, 1962-1973.	3.2	7
32	Starch-Chitosan Polyplexes: A Versatile Carrier System for Anti-Infectives and Gene Delivery. Polymers, 2018, 10, 252.	2.0	32
33	Farnesylated Glycol Chitosan as a Platform for Drug Delivery: Synthesis, Characterization, and Investigation of Mucus–Particle Interactions. Biomacromolecules, 2018, 19, 3489-3501.	2.6	33
34	Co-culture of human alveolar epithelial (hAELVi) and macrophage (THP-1) cell lines. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 211-222.	0.9	55
35	Barriers and motivations for non-invasive drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 118, 1-2.	2.0	0
36	Modelling the bronchial barrier in pulmonary drug delivery: A human bronchial epithelial cell line supplemented with human tracheal mucus. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 118, 79-88.	2.0	29

BRIGITTA LORETZ

#	Article	IF	CITATIONS
37	Biodegradable starch derivatives with tunable charge density—synthesis, characterization, and transfection efficiency. Drug Delivery and Translational Research, 2017, 7, 252-258.	3.0	8
38	Self-Assembly and Shape Control of Hybrid Nanocarriers Based on Calcium Carbonate and Carbon Nanodots. Chemistry of Materials, 2016, 28, 3796-3803.	3.2	18
39	miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6659-E6668.	3.3	50
40	Design of Polyamine-Grafted Starches for Nucleotide Analogue Delivery: In Vitro Evaluation of the Anticancer Activity. Bioconjugate Chemistry, 2016, 27, 2431-2440.	1.8	10
41	Preparation of nanosized coacervates of positive and negative starch derivatives intended for pulmonary delivery of proteins. Journal of Materials Chemistry B, 2016, 4, 2377-2386.	2.9	28
42	Calcium Phosphate System for Gene Delivery: Historical Background and Emerging Opportunities. Current Pharmaceutical Design, 2016, 22, 1529-1533.	0.9	32
43	In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nature Biotechnology, 2015, 33, 584-586.	9.4	113
44	Dimethylaminoethyl methacrylate copolymer-siRNA nanoparticles for silencing a therapeutically relevant gene in macrophages. MedChemComm, 2015, 6, 691-701.	3.5	10
45	P-glycoprotein interactions of novel psychoactive substances – Stimulation of ATP consumption and transport across Caco-2 monolayers. Biochemical Pharmacology, 2015, 94, 220-226.	2.0	27
46	Squalenoylation of Chitosan: A Platform for Drug Delivery?. Biomacromolecules, 2015, 16, 2930-2939.	2.6	28
47	Transfection System of Amino-Functionalized Calcium Phosphate Nanoparticles: In Vitro Efficacy, Biodegradability, and Immunogenicity Study. ACS Applied Materials & Interfaces, 2015, 7, 5124-5133.	4.0	22
48	Biological barriers – Advanced drug delivery, in vitro modelling, and their implications for infection research. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 1-2.	2.0	2
49	Polyester-idarubicin nanoparticles and a polymer-photosensitizer complex as potential drug formulations for cell-mediated drug delivery. International Journal of Pharmaceutics, 2014, 474, 70-79.	2.6	10
50	Design of Starch- <i>graft</i> -PEI Polymers: An Effective and Biodegradable Gene Delivery Platform. Biomacromolecules, 2014, 15, 1753-1761.	2.6	56
51	One-Step Synthesis of Nanosized and Stable Amino-Functionalized Calcium Phosphate Particles for DNA Transfection. Chemistry of Materials, 2013, 25, 3667-3674.	3.2	32
52	Crossing biological barriers for advanced drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 239-241.	2.0	19
53	Cellular delivery of polynucleotides by cationic cyclodextrin polyrotaxanes. Journal of Controlled Release, 2012, 164, 387-393.	4.8	38
54	A Hydrophobic Starch Polymer for Nanoparticleâ€Mediated Delivery of Docetaxel. Macromolecular Bioscience, 2012, 12, 184-194.	2.1	55

BRIGITTA LORETZ

#	Article	IF	CITATIONS
55	Tissue slice model of human lung cancer to investigate telomerase inhibition by nanoparticle delivery of antisense 2′-O-methyl-RNA. International Journal of Pharmaceutics, 2011, 419, 33-42.	2.6	28
56	Enhanced cellular delivery of idarubicin by surface modification of propyl starch nanoparticles employing pteroic acid conjugated polyvinyl alcohol. International Journal of Pharmaceutics, 2011, 420, 147-155.	2.6	38
57	Pectin-cysteine conjugate: synthesis and in-vitro evaluation of its potential for drug delivery. Journal of Pharmacy and Pharmacology, 2010, 58, 1601-1610.	1.2	44
58	Thiolated chitosan nanoparticles: transfection study in the Caco-2 differentiated cell culture. Nanotechnology, 2008, 19, 045101.	1.3	41
59	Design and Evaluation of a New Gastrointestinal Mucoadhesive Patch System Containing Chitosan-Glutathione. Drug Development and Industrial Pharmacy, 2007, 33, 1289-1296.	0.9	7
60	Design and evaluation of a chitosan–aprotinin conjugate for the peroral delivery of therapeutic peptides and proteins susceptible to enzymatic degradation. Journal of Drug Targeting, 2007, 15, 327-333.	2.1	26
61	Thiolated polymers: Evaluation of the influence of the amount of covalently attached l-cysteine to poly(acrylic acid). European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 405-412.	2.0	32
62	Enhanced transport of P-glycoprotein substrate saquinavir in presence of thiolated chitosan. Journal of Drug Targeting, 2007, 15, 132-139.	2.1	27
63	<i>In vitro</i> cytotoxicity testing of non-thiolated and thiolated chitosan nanoparticles for oral gene delivery. Nanotoxicology, 2007, 1, 139-148.	1.6	36
64	Role of Sulfhydryl Groups in Transfection? A Case Study with Chitosanâ^'NAC Nanoparticles. Bioconjugate Chemistry, 2007, 18, 1028-1035.	1.8	47
65	Chitosan–thioglycolic acid conjugate: An alternative carrier for oral nonviral gene delivery?. Journal of Biomedical Materials Research - Part A, 2007, 82A, 1-9.	2.1	73
66	Development and in vitro evaluation of a thiomer-based nanoparticulate gene delivery system. Biomaterials, 2007, 28, 524-531.	5.7	80
67	Oral gene delivery: Strategies to improve stability of pDNA towards intestinal digestion. Journal of Drug Targeting, 2006, 14, 311-319.	2.1	46
68	In vitro evaluation of chitosan-EDTA conjugate polyplexes as a nanoparticulate gene delivery system. AAPS Journal, 2006, 8, E756-E764.	2.2	37
69	Inhibition of malarial topoisomerase II in Plasmodium falciparum by antisense nanoparticles. International Journal of Pharmaceutics, 2006, 319, 139-146.	2.6	54
70	Oral gene delivery: Design of polymeric carrier systems shielding toward intestinal enzymatic attack. Biopolymers, 2006, 83, 327-336.	1.2	33