Beatriz Pacheco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7208301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Topological Layers in the HIV-1 gp120 Inner Domain Regulate gp41 Interaction and CD4-Triggered Conformational Transitions. Molecular Cell, 2010, 37, 656-667.	4.5	194
2	Nucleoside/nucleotide analog inhibitors of hepatitis B virus polymerase: mechanism of action and resistance. Current Opinion in Virology, 2014, 8, 1-9.	2.6	131
3	Contribution of Intrinsic Reactivity of the HIV-1 Envelope Glycoproteins to CD4-Independent Infection and Global Inhibitor Sensitivity. PLoS Pathogens, 2011, 7, e1002101.	2.1	114
4	Co-receptor Binding Site Antibodies Enable CD4-Mimetics to Expose Conserved Anti-cluster A ADCC Epitopes on HIV-1 Envelope Glycoproteins. EBioMedicine, 2016, 12, 208-218.	2.7	65
5	A V3 Loop-Dependent gp120 Element Disrupted by CD4 Binding Stabilizes the Human Immunodeficiency Virus Envelope Glycoprotein Trimer. Journal of Virology, 2010, 84, 3147-3161.	1.5	64
6	Drug repurposing for new, efficient, broad spectrum antivirals. Virus Research, 2019, 264, 22-31.	1.1	55
7	Residues in the gp41 Ectodomain Regulate HIV-1 Envelope Glycoprotein Conformational Transitions Induced by gp120-Directed Inhibitors. Journal of Virology, 2017, 91, .	1.5	53
8	Influence of the Envelope gp120 Phe 43 Cavity on HIV-1 Sensitivity to Antibody-Dependent Cell-Mediated Cytotoxicity Responses. Journal of Virology, 2017, 91, .	1.5	52
9	The Highly Conserved Layer-3 Component of the HIV-1 gp120 Inner Domain Is Critical for CD4-Required Conformational Transitions. Journal of Virology, 2013, 87, 2549-2562.	1.5	49
10	Modeling Virus- and Antibody-Specific Factors to Predict Human Immunodeficiency Virus Neutralization Efficiency. Cell Host and Microbe, 2013, 14, 547-558.	5.1	46
11	Species-Specific Inhibition of Foamy Viruses from South American Monkeys by New World Monkey TRIM5α Proteins. Journal of Virology, 2010, 84, 4095-4099.	1.5	41
12	Comparison of Uncleaved and Mature Human Immunodeficiency Virus Membrane Envelope Glycoprotein Trimers. Journal of Virology, 2018, 92, .	1.5	40
13	Envelope glycoproteins sampling states 2/3 are susceptible to ADCC by sera from HIV-1-infected individuals. Virology, 2018, 515, 38-45.	1.1	40
14	Conformational characterization of aberrant disulfide-linked HIV-1 gp120 dimers secreted from overexpressing cells. Journal of Virological Methods, 2010, 168, 155-161.	1.0	35
15	Adaptation of HIV-1 to cells expressing rhesus monkey TRIM5α. Virology, 2010, 408, 204-212.	1.1	30
16	Lineage-Specific Differences between Human and Simian Immunodeficiency Virus Regulation of gp120 Trimer Association and CD4 Binding. Journal of Virology, 2012, 86, 8974-8986.	1.5	30
17	Virus-Specific Effects of TRIM5Ârh RING Domain Functions on Restriction of Retroviruses. Journal of Virology, 2013, 87, 7234-7245.	1.5	21
18	The HIV-1 gp120 Major Variable Regions Modulate Cold Inactivation. Journal of Virology, 2013, 87, 4103-4111	1.5	20

BEATRIZ PACHECO

#	Article	IF	CITATIONS
19	The Efficacy of T Cell-Mediated Immune Responses Is Reduced by the Envelope Protein of the Chimeric HIV-1/SIV-KB9 Virus In Vivo. Journal of Immunology, 2008, 181, 5510-5521.	0.4	18
20	Specific interaction of CXCR4 with CD4 and CD8α: Functional analysis of the CD4/CXCR4 interaction in the context of HIV-1 envelope glycoprotein-mediated membrane fusion. Virology, 2006, 353, 52-67.	1.1	17
21	Adaptation of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins to New World Monkey Receptors. Journal of Virology, 2008, 82, 346-357.	1.5	16
22	Structural properties of the ectodomain of hepatitis C virus E2 envelope protein. Virus Research, 2009, 139, 91-99.	1.1	16
23	Expression and structural properties of a chimeric protein based on the ectodomains of E1 and E2 hepatitis C virus envelope glycoproteins. Protein Expression and Purification, 2010, 71, 123-131.	0.6	15
24	A Highly Conserved gp120 Inner Domain Residue Modulates Env Conformation and Trimer Stability. Journal of Virology, 2016, 90, 8395-8409.	1.5	15
25	Membrane-perturbing properties of three peptides corresponding to the ectodomain of hepatitis C virus E2 envelope protein. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 755-763.	1.4	13
26	Characterization of a dual-tropic Human immunodeficiency virus (HIV-1) strain derived from the prototypical X4 isolate HXBc2. Virology, 2013, 438, 5-13.	1.1	11
27	Circular dichroism and fluorescence spectroscopic properties of the major core protein of feline immunodeficiency virus and its tryptophan mutants. FEBS Journal, 1999, 266, 1081-1089.	0.2	8
28	Thermal Stability of the Human Immunodeficiency Virus Type 1 (HIV-1) Receptors, CD4 and CXCR4, Reconstituted in Proteoliposomes. PLoS ONE, 2010, 5, e13249.	1.1	8
29	Adaptation of HIV-1 to cells with low expression of the CCR5 coreceptor. Virology, 2017, 508, 90-107.	1.1	7
30	Characterization of two distinct early post-entry blocks to HIV-1 in common marmoset lymphocytes. Scientific Reports, 2016, 6, 37489.	1.6	6
31	HIV-1 Adapts To Replicate in Cells Expressing Common Marmoset APOBEC3G and BST2. Journal of Virology, 2016, 90, 725-740.	1.5	4
32	Urea equilibrium unfolding of the major core protein of the retrovirus feline immunodeficiency virus and its tryptophan mutants. BBA - Proteins and Proteomics, 2001, 1546, 87-97.	2.1	2