
Lourdes Villa-Tanaca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7207359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Recognition of Citroflavonoids Naringin and Naringenin at the Active Site of the HMG-CoA Reductase and DNA Topoisomerase Type II Enzymes of Candida spp. and Ustilago maydis. Indian Journal of Microbiology, 2022, 62, 79-87.	2.7	4
2	Xylose Metabolism in Bioethanol Production: Saccharomyces cerevisiae vs Non-Saccharomyces Yeasts. Bioenergy Research, 2022, 15, 905-923.	3.9	6
3	Intracellular Aminopeptidase Activity Determination from the Fungus Sporisorium reilianum: Purification and Biochemical Characterization of psrAPEi Enzyme. Current Microbiology, 2022, 79, 90.	2.2	1
4	Antifungal Activity of Fibrate-Based Compounds and Substituted Pyrroles That Inhibit the Enzyme 3-Hydroxy-methyl-glutaryl-CoA Reductase of <i>Candida glabrata</i> (CgHMGR), Thus Decreasing Yeast Viability and Ergosterol Synthesis. Microbiology Spectrum, 2022, 10, e0164221.	3.0	7
5	Inhibitors of DNA topoisomerases I and II applied to Candida dubliniensis reduce growth, viability, the generation of petite mutants and toxicity, while acting synergistically with fluconazole. FEMS Yeast Research, 2021, 21, .	2.3	4
6	One-pot synthesis of dihydropyridine carboxylic acids via functionalization of 3-((trimethylsilyl)ethynyl)pyridines and an unusual hydration of alkynes: Molecular docking and antifungal activity. Tetrahedron, 2021, 86, 132086.	1.9	4
7	The Mexican giant maize of Jala landrace harbour plant-growth-promoting rhizospheric and endophytic bacteria. 3 Biotech, 2021, 11, 447.	2.2	9
8	Three new species of Rhytidhysteron (Dothideomycetes, Ascomycota) from Mexico. MycoKeys, 2021, 83, 123-144.	1.9	5
9	Point mutations in Candida glabrata 3-hydroxy-3-methylglutaryl-coenzyme A reductase (CgHMGR) decrease enzymatic activity and substrate/inhibitor affinity. Scientific Reports, 2021, 11, 20842.	3.3	Ο
10	Three-Component Synthesis of 2-Amino-3-cyano-4H-chromenes, In Silico Analysis of Their Pharmacological Profile, and In Vitro Anticancer and Antifungal Testing. Pharmaceuticals, 2021, 14, 1110.	3.8	6
11	Phylogenetic Position of Geosmithia spp. (Hypocreales) Living in Juniperus spp. Forests (Cupressaceae) with Bark Beetles of Phloeosinus spp. (Scolytinae) from the Northeast of Mexico. Forests, 2020, 11, 1142.	2.1	3
12	Phylogeny, evolution, and potential ecological relationship of cytochrome CYP52 enzymes in Saccharomycetales yeasts. Scientific Reports, 2020, 10, 10269.	3.3	8
13	First report of a catheter-related bloodstream infection by Candida haemulonii in a children's hospital in Mexico City. International Journal of Infectious Diseases, 2020, 92, 123-126.	3.3	9
14	Synthesis and biological activity of fibrate-based acyl- and alkyl-phenoxyacetic methyl esters and 1,2-dihydroquinolines. Medicinal Chemistry Research, 2020, 29, 459-478.	2.4	6
15	The Salmonella Typhimurium InvF-SicA complex is necessary for the transcription of sopB in the absence of the repressor H-NS. PLoS ONE, 2020, 15, e0240617.	2.5	9
16	El género Rhytidhysteron (Dothideomycetes, Ascomycota) en México. Acta Botanica Mexicana, 2020, , .	0.3	6
17	<i>Candida pseudoglaebosa</i> and <i>Kodamaea ohmeri</i> are capable of degrading alkanes in the presence of heavy metals. Journal of Basic Microbiology, 2019, 59, 792-806.	3.3	3
18	Inhibition of recombinant enzyme 3-hydroxy-3-methylglutaryl-CoA reductase from Candida glabrata by α-asarone-based synthetic compounds as antifungal agents. Journal of Biotechnology, 2019, 292, 64-67.	3.8	11

LOURDES VILLA-TANACA

#	Article	IF	CITATIONS
19	Candida pseudoglaebosaandKodamaea ohmeriare capable of degrading alkanes in the presence of heavy metals. Journal of Basic Microbiology, 2019, , .	3.3	0
20	Autophagosomes accumulation in the vacuoles of the fungus Ustilago maydis and the role of proteases in their digestion. FEMS Microbiology Letters, 2019, 366, .	1.8	8
21	Simvastatin and other inhibitors of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase of Ustilago maydis (Um-Hmgr) affect the viability of the fungus, its synthesis of sterols and mating. Revista Iberoamericana De Micologia, 2019, 36, 1-8.	0.9	6
22	Case report: A retrospective serological analysis indicating human exposure to tick-borne relapsing fever spirochetes in Sonora, Mexico. PLoS Neglected Tropical Diseases, 2019, 13, e0007215.	3.0	8
23	Isolation of Yeasts from Guajillo Pepper (Capsicum annuum L.) Fermentation and Study of Some Probiotic Characteristics. Probiotics and Antimicrobial Proteins, 2019, 11, 748-764.	3.9	27
24	Cyanotrophic and arsenic oxidizing activities of Pseudomonas mendocina P6115 isolated from mine tailings containing high cyanide concentration. Archives of Microbiology, 2018, 200, 1037-1048.	2.2	5
25	Inhibition of dengue virus infection by small interfering RNAs that target highly conserved sequences in the NS4B or NS5 coding regions. Archives of Virology, 2018, 163, 1331-1335.	2.1	14
26	Activity and expression of Candida glabrata vacuolar proteases in autophagy-like conditions. FEMS Yeast Research, 2018, 18, .	2.3	3
27	Dibutyltin(IV) Complexes Derived from L-DOPA: Synthesis, Molecular Docking, Cytotoxic and Antifungal Activity. Chemical and Pharmaceutical Bulletin, 2018, 66, 1104-1113.	1.3	10
28	Heterologous expression and characterization of the aspartic endoprotease Pep4um from Ustilago maydis, a homolog of the human Chatepsin D, an important breast cancer therapeutic target. Molecular Biology Reports, 2018, 45, 1155-1163.	2.3	4
29	Synthesis, Molecular Docking, and Antimycotic Evaluation of Some 3-Acyl Imidazo[1,2-a]pyrimidines. Molecules, 2018, 23, 599.	3.8	22
30	Recombinant 3-Hydroxy 3-Methyl Glutaryl-CoA Reductase from Candida glabrata (Rec-CgHMGR) Obtained by Heterologous Expression, as a Novel Therapeutic Target Model for Testing Synthetic Drugs. Applied Biochemistry and Biotechnology, 2017, 182, 1478-1490.	2.9	13
31	Autolysis of Pichia pastoris induced by cold. AMB Express, 2017, 7, 95.	3.0	4
32	Inferring the role of microorganisms in water kefir fermentations. International Journal of Food Science and Technology, 2017, 52, 559-571.	2.7	43
33	Polymorphism in the regulatory regions of genes CgYPS1 and CgYPS7 encoding yapsins in Candida glabrata is associated with changes in expression levels. FEMS Yeast Research, 2017, 17, .	2.3	4
34	Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings. Microbial Ecology, 2016, 72, 324-346.	2.8	13
35	Secreted fungal aspartic proteases: A review. Revista Iberoamericana De Micologia, 2016, 33, 76-82.	0.9	64
36	Vacuolar proteases from Candida glabrata: Acid aspartic protease PrA, neutral serine protease PrB and serine carboxypeptidase CpY. The nitrogen source influences their level of expression. Revista Iberoamericana De Micologia, 2016, 33, 26-33.	0.9	4

#	Article	IF	CITATIONS
37	The <i>pep4</i> gene encoding proteinase <scp>A</scp> is involved in dimorphism and pathogenesis of <i><scp>U</scp>stilago maydis</i> . Molecular Plant Pathology, 2015, 16, 837-846.	4.2	42
38	Molecular Cloning and Heterologous Expression in Pichia pastoris of X-Prolyl-dipeptidyl Aminopeptidase from Basidiomycete Ustilago maydis. Applied Biochemistry and Biotechnology, 2014, 172, 2530-2539.	2.9	6
39	Synthesis and highly potent hypolipidemic activity of alpha-asarone- and fibrate-based 2-acyl and 2-alkyl phenols as HMG-CoA reductase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 5871-5882.	3.0	21
40	The 3-hydroxy-3-methylglutaryl coenzyme-A reductases from fungi: A proposal as a therapeutic target and as a study model. Revista Iberoamericana De Micologia, 2014, 31, 81-85.	0.9	15
41	Workshop Oaxaca. Revista Iberoamericana De Micologia, 2014, 31, 1.	0.9	Ο
42	Evaluation of new antimicrobial agents on <i>Bacillus spp</i> . strains: docking affinity and <i>in vitro</i> inhibition of glutamate-racemase. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28, 1026-1033.	5.2	7
43	Biochemical and Molecular Analysis of Some Commercial Samples of Chilli Peppers from Mexico. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-11.	3.0	28
44	Production and Characterization of Extracellular α-Amylase Produced by Wickerhamia sp. X-Fep. Applied Biochemistry and Biotechnology, 2012, 167, 2117-2129.	2.9	10
45	Huitlacoche (corn smut), caused by the phytopathogenic fungus Ustilago maydis, as a functional food. Revista Iberoamericana De Micologia, 2011, 28, 69-73.	0.9	38
46	Design, synthesis, and docking of highly hypolipidemic agents: Schizosaccharomyces pombe as a new model for evaluating α-asarone-based HMG-CoA reductase inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 4238-4248.	3.0	34
47	Phylogeny and evolution of the aspartyl protease family from clinically relevant Candida species. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 505-512.	1.6	58
48	Bacterial Community and Nitrogen Fixation in the Red Turpentine Beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microbial Ecology, 2009, 58, 879-891.	2.8	144
49	Differential expression ofCandida dubliniensis-secreted aspartyl proteinase genes (CdSAP1–4) under different physiological conditions and during infection of a keratinocyte culture. FEMS Immunology and Medical Microbiology, 2009, 56, 212-222.	2.7	16
50	The intracellular proteolytic system of Yarrowia lipolytica and characterization of an aminopeptidase. FEMS Microbiology Letters, 2007, 268, 178-186.	1.8	8
51	The Proteolytic System of Candida dubliniensis. American Journal of Infectious Diseases, 2007, 3, 76-83.	0.2	5
52	Analysis and expression ofSTE13cagene encoding a putative X-prolyl dipeptidyl aminopeptidase fromCandida albicans. FEMS Immunology and Medical Microbiology, 2005, 45, 459-469.	2.7	10
53	Purification and characterization of an intracellular aspartyl acid proteinase (pumAi) from Ustilago maydis. Canadian Journal of Microbiology, 2005, 51, 171-175.	1.7	5
54	Purification and characterization of aminopeptidase (pumAPE) fromUstilago maydis. FEMS Microbiology Letters, 2004, 234, 247-253.	1.8	13

LOURDES VILLA-TANACA

#	Article	IF	CITATIONS
55	Purification and characterization of a lysine aminopeptidase fromKluyveromyces marxianus. FEMS Microbiology Letters, 2004, 235, 369-375.	1.8	54
56	Purification and Characterization of an Extracellular Non-Aspartyl Acid Protease (pumAe) from Ustilago maydis. Current Microbiology, 2003, 47, 408-11.	2.2	6
57	Identification of Candida spp. by Randomly Amplified Polymorphic DNA Analysis and Differentiation between Candida albicans and Candida dubliniensis by Direct PCR Methods. Journal of Clinical Microbiology, 2003, 41, 414-420.	3.9	54
58	Genetic Diversity among Clinical Isolates of Candida glabrata Analyzed by Randomly Amplified Polymorphic DNA and Multilocus Enzyme Electrophoresis Analyses. Journal of Clinical Microbiology, 2003, 41, 4799-4804.	3.9	18
59	Proteinases and Exopeptidases from the Phytopathogenic Fungus Ustilago maydis. Mycologia, 2003, 95, 327.	1.9	17
60	Proteinases and exopeptidases from the phytopathogenic fungus <i>Ustilago maydis</i> . Mycologia, 2003, 95, 327-339.	1.9	23
61	Proteinases and exopeptidases from the phytopathogenic fungus Ustilago maydis. Mycologia, 2003, 95, 327-39.	1.9	4
62	Evolution of GPI-Aspartyl Proteinases (Yapsines) of Candida spp. , 0, , .		1

5