
Michael W Martynowycz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7207327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ab initio phasing macromolecular structures using electron-counted MicroED data. Nature Methods, 2022, 19, 724-729.	9.0	29
2	Microcrystal Electron Diffraction of Small Molecules. Journal of Visualized Experiments, 2021, , .	0.2	2
3	MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
4	Protocol for the use of focused ion-beam milling to prepare crystalline lamellae for microcrystal electron diffraction (MicroED). STAR Protocols, 2021, 2, 100686.	0.5	10
5	Ligand Incorporation into Protein Microcrystals for MicroED by On-Grid Soaking. Structure, 2021, 29, 88-95.e2.	1.6	16
6	Studying Membrane Protein Structures by MicroED. Methods in Molecular Biology, 2021, 2302, 137-151.	0.4	2
7	Microcrystal Electron Diffraction for Molecular Design of Functional Non-Fullerene Acceptor Structures. Chemistry of Materials, 2021, 33, 966-977.	3.2	12
8	Benchmarking the ideal sample thickness in cryo-EM. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	37
9	Structural Changes in Films of Pulmonary Surfactant Induced by Surfactant Vesicles. Langmuir, 2020, 36, 13439-13447.	1.6	3
10	MicroED structure of lipid-embedded mammalian mitochondrial voltage-dependent anion channel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32380-32385.	3.3	35
11	Experimental Phasing of MicroED Data Using Radiation Damage. Structure, 2020, 28, 458-464.e2.	1.6	18
12	Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals. IUCrJ, 2020, 7, 306-323.	1.0	32
13	Fragment-based determination of a proteinase K structure from MicroED data using <i>ARCIMBOLDO_SHREDDER</i> . Acta Crystallographica Section D: Structural Biology, 2020, 76, 703-712.	1.1	12
14	Qualitative Analyses of Polishing and Precoating FIB Milled Crystals for MicroED. Structure, 2019, 27, 1594-1600.e2.	1.6	33
15	Collection of Continuous Rotation MicroED Data from Ion Beam-Milled Crystals of Any Size. Structure, 2019, 27, 545-548.e2.	1.6	58
16	<i>Salmonella</i> Membrane Structural Remodeling Increases Resistance to Antimicrobial Peptide LL-37. ACS Infectious Diseases, 2019, 5, 1214-1222.	1.8	35
17	MicroED data collection with SerialEM. Ultramicroscopy, 2019, 201, 77-80.	0.8	50
18	Peptoid drug discovery and optimization via surface Xâ€ r ay scattering. Biopolymers, 2019, 110, e23274.	1.2	12

#	Article	IF	CITATIONS
19	MicroED with the Falcon III direct electron detector. IUCrJ, 2019, 6, 921-926.	1.0	52
20	Tailoring Tryptophan Synthase TrpB for Selective Quaternary Carbon Bond Formation. Journal of the American Chemical Society, 2019, 141, 19817-19822.	6.6	46
21	Hydrophobic interactions modulate antimicrobial peptoid selectivity towards anionic lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1414-1423.	1.4	43
22	From electron crystallography of 2D crystals to MicroED of 3D crystals. Current Opinion in Colloid and Interface Science, 2018, 34, 9-16.	3.4	20
23	Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp. Nature Structural and Molecular Biology, 2018, 25, 131-134.	3.6	87
24	Analysis of Global and Site-Specific Radiation Damage in Cryo-EM. Structure, 2018, 26, 759-766.e4.	1.6	152
25	The CryoEM Method MicroED as a Powerful Tool for Small Molecule Structure Determination. ACS Central Science, 2018, 4, 1587-1592.	5.3	307
26	Hydrophobic Interactions Modulate Peptide Cell Specificity. Biophysical Journal, 2018, 114, 455a.	0.2	1
27	Molecular-Level Structure and Packing in Phase-Separated Arachidic Acid–Perfluorotetradecanoic Acid Monolayer Films. Langmuir, 2018, 34, 10673-10683.	1.6	9
28	MicroED Structure of Au ₁₄₆ (p-MBA) ₅₇ at Subatomic Resolution Reveals a Twinned FCC Cluster. Journal of Physical Chemistry Letters, 2017, 8, 5523-5530.	2.1	100
29	The emerging threat of superwarfarins: history, detection, mechanisms, and countermeasures. Annals of the New York Academy of Sciences, 2016, 1374, 111-122.	1.8	48
30	Membrane Cholesterol Modulates Superwarfarin Toxicity. Biophysical Journal, 2016, 110, 1777-1788.	0.2	16
31	Monomolecular Siloxane Film as a Model of Single Site Catalysts. Journal of the American Chemical Society, 2016, 138, 12432-12439.	6.6	11
32	Cyclization Improves Membrane Permeation by Antimicrobial Peptoids. Langmuir, 2016, 32, 12905-12913.	1.6	33
33	Modification of Salmonella Lipopolysaccharides Prevents the Outer Membrane Penetration of Novobiocin. Biophysical Journal, 2015, 109, 2537-2545.	0.2	29
34	Interaction of Novobiocin with Salmonella Sp Outer Membrane. Biophysical Journal, 2014, 106, 702a-703a.	0.2	0
35	Microcrystal Electron Diffraction for Molecular Design of Functional Non-Fullerene Acceptor Structures. , 0, , .		0