Fumin Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/7206492/fumin-zhang-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
170	Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. <i>Journal of Field Robotics</i> , 2010 , 27, 718-740	6.7	199
169	Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. <i>Chemical Engineering Journal</i> , 2015 , 259, 183-190	14.7	173
168	Cooperative Filters and Control for Cooperative Exploration. <i>IEEE Transactions on Automatic Control</i> , 2010 , 55, 650-663	5.9	156
167	Cooperative Control for Ocean Sampling: The Glider Coordinated Control System. <i>IEEE Transactions on Control Systems Technology</i> , 2008 , 16, 735-744	4.8	143
166	Control of coordinated patterns for ocean sampling. International Journal of Control, 2007, 80, 1186-119	9 9 .5	127
165	Spiraling motion of underwater gliders: Modeling, analysis, and experimental results. <i>Ocean Engineering</i> , 2013 , 60, 1-13	3.9	113
164	Visible-light-induced aerobic photocatalytic oxidation of aromatic alcohols to aldehydes over Ni-doped NH2-MIL-125(Ti). <i>Applied Catalysis B: Environmental</i> , 2016 , 187, 212-217	21.8	107
163	Coordinated patterns of unit speed particles on a closed curve. <i>Systems and Control Letters</i> , 2007 , 56, 397-407	2.4	81
162	Future Trends in Marine Robotics [TC Spotlight]. IEEE Robotics and Automation Magazine, 2015, 22, 14-1	2 324	78
161	Task Scheduling for Control Oriented Requirements for Cyber-Physical Systems 2008,		72
160	Tunable catalytic properties of multi-metalBrganic frameworks for aerobic styrene oxidation. <i>Chemical Engineering Journal</i> , 2016 , 299, 135-141	14.7	67
159	Motion Parameter Optimization and Sensor Scheduling for the Sea-Wing Underwater Glider. <i>IEEE Journal of Oceanic Engineering</i> , 2013 , 38, 243-254	3.3	59
158	Robust Cooperative Exploration With a Switching Strategy. <i>IEEE Transactions on Robotics</i> , 2012 , 28, 828	-839	50
157	Cooperative exploration of level surfaces of three dimensional scalar fields. <i>Automatica</i> , 2011 , 47, 2044	-3.951	39
156	A decoupled controller design approach for formation control of autonomous underwater vehicles with time delays. <i>IET Control Theory and Applications</i> , 2013 , 7, 1950-1958	2.5	35
155	Cascade catalytic hydrogenationByclization of methyl levulinate to form Evalerolactone over Ru nanoparticles supported on a sulfonic acid-functionalized UiO-66 catalyst. <i>RSC Advances</i> , 2017 , 7, 44082	2-34708	8 ³¹
154	Geometric Cooperative Control of Particle Formations. <i>IEEE Transactions on Automatic Control</i> , 2010 , 55, 800-803	5.9	31

(2017-2017)

153	and reaction mechanism in the hydrogenation of 2,3,5-trimethylbenzoquinone. <i>Chemical Engineering Journal</i> , 2017 , 328, 977-987	14.7	27	
152	Real-Time Guidance of Underwater Gliders Assisted by Predictive Ocean Models. <i>Journal of Atmospheric and Oceanic Technology</i> , 2015 , 32, 562-578	2	26	
151			26	
150	Dynamic modeling of an autonomous underwater vehicle. <i>Journal of Marine Science and Technology</i> , 2015 , 20, 199-212	1.7	24	
149	Stability and Robustness Analysis for Curve Tracking Control using Input-to-State Stability. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 1320-1326	5.9	24	
148	A provably complete exploration strategy by constructing Voronoi diagrams. <i>Autonomous Robots</i> , 2010 , 29, 367-380	3	24	
147	Curve Tracking Control for Autonomous Vehicles with Rigidly Mounted Range Sensors. <i>Journal of Intelligent and Robotic Systems: Theory and Applications</i> , 2009 , 56, 177-197	2.9	23	
146	A Dynamic Battery Model for Co-design in Cyber-Physical Systems 2009 ,		23	
145	Design and analysis of folding propulsion mechanism for hybrid-driven underwater gliders. <i>Ocean Engineering</i> , 2016 , 119, 125-134	3.9	23	
144	Robustness analysis for battery-supported cyber-physical systems. <i>Transactions on Embedded Computing Systems</i> , 2013 , 12, 1-27	1.8	20	
143	Optimal and adaptive battery discharge strategies for Cyber-Physical Systems 2009,		20	
142	Coupling Ru nanoparticles and sulfonic acid moieties on single MIL-101 microcrystals for upgrading methyl levulinate into Evalerolactone. <i>Applied Catalysis A: General</i> , 2018 , 563, 54-63	5.1	20	
141	Robustness of Adaptive Control under Time Delays for Three-Dimensional Curve Tracking. <i>SIAM Journal on Control and Optimization</i> , 2015 , 53, 2203-2236	1.9	19	
140	Tail-Enabled Spiraling Maneuver for Gliding Robotic Fish. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2014 , 136,	1.6	19	
139	Motion tomography: Mapping flow fields using autonomous underwater vehicles. <i>International Journal of Robotics Research</i> , 2017 , 36, 320-336	5.7	18	
138	Adaptive control for planar curve tracking under controller uncertainty. <i>Automatica</i> , 2013 , 49, 1411-14	118 _{.7}	18	
137	Fabrication of Pe2O3Nanoparticles by Solid-State Thermolysis of a Metal-Organic Framework, MIL-100(Fe), for Heavy Metal Ions Removal. <i>Journal of Chemistry</i> , 2014 , 2014, 1-6	2.3	18	
136	Monocular vision-based human following on miniature robotic blimp 2017 ,		17	

135	Robust Control of Formation Dynamics for Autonomous Underwater Vehicles in Horizontal Plane. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2012 , 134,	1.6	17
134	A high-gain adaptive observer for detecting Li-ion battery terminal voltage collapse. <i>Automatica</i> , 2014 , 50, 896-902	5.7	16
133	Experimental study of curvature-based control laws for obstacle avoidance 2004,		16
132	Synthesis of MIL-100(Fe) at Low Temperature and Atmospheric Pressure. <i>Journal of Chemistry</i> , 2013 , 2013, 1-4	2.3	15
131	Visible-light-driven photocatalytic CO2 reduction over ketoenamine-based covalent organic frameworks: role of the host functional groups. <i>Catalysis Science and Technology</i> , 2021 , 11, 1717-1724	5.5	15
130	Pd/UiO-66(Hf): A highly efficient heterogeneous catalyst for the hydrogenation of 2,3,5-trimethylbenzoquinone. <i>Catalysis Communications</i> , 2018 , 113, 23-26	3.2	14
129	Trends in Control and Decision-Making for Human R obot Collaboration Systems 2017 ,		13
128	A Speeding-Up and Slowing-Down Strategy for Distributed Source Seeking With Robustness Analysis. <i>IEEE Transactions on Control of Network Systems</i> , 2016 , 3, 231-240	4	12
127	Autopilot design for A class of miniature autonomous blimps 2017,		12
126	Constructing the three-dimensional structure of an anticyclonic eddy with the optimal configuration of an underwater glider network. <i>Applied Ocean Research</i> , 2020 , 95, 101893	3.4	12
125	Ru nanoclusters supported on HfO2@CN derived from NH2-UiO-66(Hf) as stable catalysts for the hydrogenation of levulinic acid to Evalerolactone. <i>Catalysis Communications</i> , 2019 , 128, 105710	3.2	11
124	Synthesis, characterization, and CO2 adsorption properties of metal®rganic framework NH2MIL®101(V). <i>Materials Letters</i> , 2020 , 264, 127402	3.3	11
123	Steady spiraling motion of gliding robotic fish 2012 ,		11
122	Bio-inspired Source Seeking with no Explicit Gradient Estimation*. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 240-245		11
121	Control of small formations using shape coordinates		11
120	Human-Robot Mutual Trust in (Semi)autonomous Underwater Robots. <i>Studies in Computational Intelligence</i> , 2014 , 115-137	0.8	11
119	A Gradient-Free Three-Dimensional Source Seeking Strategy With Robustness Analysis. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 3439-3446	5.9	11
118	Trend and Bounds for Error Growth in Controlled Lagrangian Particle Tracking. <i>IEEE Journal of Oceanic Engineering</i> , 2014 , 39, 10-25	3.3	10

(2015-2014)

117	Real-Time Modeling of Ocean Currents for Navigating Underwater Glider Sensing Networks. <i>Studies in Computational Intelligence</i> , 2014 , 61-75	0.8	10
116	Cyber-Maritime Cycle: Autonomy of Marine Robots for Ocean Sensing. <i>Foundations and Trends in Robotics</i> , 2016 , 5, 1-115	11	10
115	Adaptive planar curve tracking control and robustness analysis under state constraints and unknown curvature. <i>Automatica</i> , 2017 , 75, 133-143	5.7	9
114	Controller performance of marine robots in reminiscent oil surveys 2012,		9
113	Collaborative Autonomous Surveys in Marine Environments Affected by Oil Spills. <i>Studies in Computational Intelligence</i> , 2014 , 87-113	0.8	9
112	2016,		9
111	Path-Guided Containment Maneuvering of Mobile Robots: Theory and Experiments. <i>IEEE Transactions on Industrial Electronics</i> , 2021 , 68, 7178-7187	8.9	9
110	Inaugural issue of Byber-physical systems[] <i>Cyber-Physical Systems</i> , 2015 , 1, 1-4	1.1	8
109	A speed-up and speed-down strategy for swarm optimization 2014 ,		8
108	Dynamics analysis of wave-driven unmanned surface vehicle in longitudinal profile 2014,		8
107	Real-time Modelling of Tidal Current for Navigating Underwater Glider Sensing Networks. <i>Procedia Computer Science</i> , 2012 , 10, 1121-1126	1.6	8
106	Adaptive detection of terminal voltage collapses for Li-ion batteries 2012,		8
105	Glider CT 2013 ,		8
104	A lower bound on navigation error for marine robots guided by ocean circulation models 2011,		8
103	2007,		8
102	Highly dispersed Ru nanoparticles on a bipyridine-linked covalent organic framework for efficient photocatalytic CO2 reduction. <i>Sustainable Energy and Fuels</i> ,	5.8	8
101	Autonomous flying blimp interaction with human in an indoor space. <i>Frontiers of Information Technology and Electronic Engineering</i> , 2019 , 20, 45-59	2.2	7
100	Dynamic real-time scheduling for human-agent collaboration systems based on mutual trust. <i>Cyber-Physical Systems</i> , 2015 , 1, 76-90	1.1	7

99	Dissipativity-Based Teleoperation with Time-Varying Communication Delays*. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2013 , 46, 369-376		7
98	MetalBrganic framework derived Pd/ZrO2@CN as a stable catalyst for the catalytic hydrogenation of 2,3,5-trimethylbenzoquinone. <i>Applied Organometallic Chemistry</i> , 2019 , 33, e5233	3.1	6
97	Geometric formation control for autonomous underwater vehicles 2010,		6
96	Intruder capturing game on a topological map assisted by information networks 2011,		6
95	Coordinated orbit transfer for satellite clusters. <i>Annals of the New York Academy of Sciences</i> , 2004 , 1017, 112-37	6.5	6
94	A Switching Strategy for Target Tracking by Mobile Sensing Agents. <i>Journal of Communications</i> , 2013 , 8, 47-54	0.5	6
93	Atomically Dispersed Vanadium Sites Anchored on N-Doped Porous Carbon for the Efficient Oxidative Coupling of Amines to Imines. <i>ACS Applied Materials & Dispersed Materials & D</i>	9.5	6
92	Parameter Identification of Blimp Dynamics through Swinging Motion 2018,		6
91	Controlled Lagrangian Particle Tracking: Error Growth Under Feedback Control. <i>IEEE Transactions on Control Systems Technology</i> , 2018 , 26, 874-889	4.8	5
90	Characteristics of human pointing motions with acceleration 2015 ,		5
90 89	Characteristics of human pointing motions with acceleration 2015, A lower bound for controlled Lagrangian particle tracking error 2010,		5
89	A lower bound for controlled Lagrangian particle tracking error 2010, Coordinated Patterns on Smooth Curves Strategies for improving the photogatalytic performance of metal-organic frameworks for CO2	6.4	5
89	A lower bound for controlled Lagrangian particle tracking error 2010, Coordinated Patterns on Smooth Curves Strategies for improving the photocatalytic performance of metal-organic frameworks for CO2	6.4	5
89 88 87	A lower bound for controlled Lagrangian particle tracking error 2010, Coordinated Patterns on Smooth Curves Strategies for improving the photocatalytic performance of metal-organic frameworks for CO2 reduction: A review. Journal of Environmental Sciences, 2023, 125, 290-308 Resolving Contentions for Intelligent Traffic Intersections Using Optimal Priority Assignment and Model Predictive Control 2018, Constructing the Three-Dimensional Structure of an Anticyclonic Eddy in the South China Sea Using	6.4	555
89 88 87 86	A lower bound for controlled Lagrangian particle tracking error 2010, Coordinated Patterns on Smooth Curves Strategies for improving the photocatalytic performance of metal-organic frameworks for CO2 reduction: A review. Journal of Environmental Sciences, 2023, 125, 290-308 Resolving Contentions for Intelligent Traffic Intersections Using Optimal Priority Assignment and Model Predictive Control 2018, Constructing the Three-Dimensional Structure of an Anticyclonic Eddy in the South China Sea Using Multiple Underwater Gliders. Journal of Atmospheric and Oceanic Technology, 2019, 36, 2449-2470 Fe/Fe3C@N-doped porous carbon microspindles templated from a metalogranic framework as		5555
89 88 87 86 85	A lower bound for controlled Lagrangian particle tracking error 2010, Coordinated Patterns on Smooth Curves Strategies for improving the photocatalytic performance of metal-organic frameworks for CO2 reduction: A review. Journal of Environmental Sciences, 2023, 125, 290-308 Resolving Contentions for Intelligent Traffic Intersections Using Optimal Priority Assignment and Model Predictive Control 2018, Constructing the Three-Dimensional Structure of an Anticyclonic Eddy in the South China Sea Using Multiple Underwater Gliders. Journal of Atmospheric and Oceanic Technology, 2019, 36, 2449-2470 Fe/Fe3C@N-doped porous carbon microspindles templated from a metalBrganic framework as highly selective and stable catalysts for the catalytic oxidation of sulfides to sulfoxides. Molecular	2	5555

(2016-2018)

81	Integrating a PCA Learning Algorithm with the SUSD Strategy for a Collective Source Seeking Behavior 2018 ,		4
80	Robustness of a class of three-dimensional curve tracking control laws under time delays and polygonal state constraints 2013 ,		4
79	Robust control of horizontal formation dynamics for autonomous underwater vehicles 2011,		4
78	A Switching strategy for robust cooperative exploration 2010 ,		4
77	Localization of underwater gliders with acoustic travel-time in an observation network 2016,		4
76	Evaluating acousticcommunication performance of micro autonomous underwater vehicles in confined spaces. <i>Frontiers of Information Technology and Electronic Engineering</i> , 2018 , 19, 1013-1023	2.2	4
75	Model predictive control under timing constraints induced by controller area networks. <i>Real-Time Systems</i> , 2017 , 53, 196-227	1.3	3
74	A data assimilation framework for data-driven flow models enabled by motion tomography. <i>International Journal of Intelligent Robotics and Applications</i> , 2019 , 3, 158-177	1.7	3
73	Design and Evaluation of an Acoustic Modem for a Small Autonomous Unmanned Vehicle. <i>Sensors</i> , 2019 , 19,	3.8	3
72	Contention resolving optimal priority assignment for event-triggered model predictive controllers 2017 ,		3
71	Using recurrent neural networks (RNNs) as planners for bio-inspired robotic motion 2017,		3
7º	Consensus on a sphere for a 3-dimensional speeding up and slowing down strategy 2017 ,		3
69	Mutual trust based scheduling for (semi)autonomous multi-agent systems 2015,		3
68	A path planning approach to compute the smallest robust forward invariant sets 2014 ,		3
67	Cooperatively Mapping of the Underwater Acoustic Channel by Robot Swarms 2014,		3
66	Steady three dimensional gliding motion of an underwater glider 2011 ,		3
65	Experimental validation of source seeking with a switching strategy 2011,		3
64	Discretized boundary methods for computing smallest forward invariant sets 2016,		3

63	Cooperative filtering for parameter identification of diffusion processes 2016,		3
62	A learning algorithm to select consistent reactions to human movements 2016 ,		3
61	A Derivative-Free Optimization Method With Application to Functions With Exploding and Vanishing Gradients 2021 , 5, 587-592		3
60	Modeling and Control of Swing Oscillation of Underactuated Indoor Miniature Autonomous Blimps. <i>Unmanned Systems</i> , 2021 , 09, 73-86	3	3
59	Boosted Catalytic Hydrogenation Performance Using Isolated Co Sites Anchored on Nitrogen-Incorporated Hollow Porous Carbon. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 5088-5098	3.8	3
58	Tidal Variability of Acoustic Detection 2016 ,		2
57	A bio-inspired plume tracking algorithm for mobile sensing swarms in turbulent flow 2013,		2
56	Target localization: Energy-information trade-offs using mobile sensor networks 2014,		2
55	Robust geometric formation control of multiple autonomous underwater vehicles with time delays 2013 ,		2
54	Input-to-state stability for curve tracking control: A constructive approach 2011,		2
53	An exploration strategy by constructing Voronoi diagrams with provable completeness 2009,		2
52	Cooperative Kalman filters for cooperative exploration 2008,		2
51	Boundary following by robot formations without GPS 2008,		2
50	Curve Tracking Control for Legged Locomotion. <i>Proceedings of the American Control Conference</i> , 2007 ,	1.2	2
49	Cooperative shape control of particle formations 2007,		2
48	Boundary Tracking and Obstacle Avoidance Using Gyroscopic Control. <i>Springer Proceedings in Mathematics and Statistics</i> , 2013 , 417-446	0.2	2
47	Contention-resolving model predictive control for coupled control systems with a shared resource. <i>Automatica</i> , 2020 , 122, 109219	5.7	2
46	Learning and detecting abnormal speed of marine robots. <i>International Journal of Advanced Robotic Systems</i> , 2021 , 18, 172988142199926	1.4	2

(2013-2021)

45	A bio-inspired localization-free stochastic coverage algorithm with verified reachability. <i>Bioinspiration and Biomimetics</i> , 2021 , 16,	2.6	2
44	2016,		2
43	Modeling the effect of nanoparticles & the bistability of transmembrane potential in non-excitable cells 2016 ,		2
42	Bio inspired source seeking: a Hybrid Speeding Up and Slowing Down Algorithm 2016 ,		2
41	Resolving Temporal Variations in Data-Driven Flow Models Constructed by Motion Tomography**The research work is supported by ONR grants N00014-10-10712 (YIP) and N00014-14-1-0635; and NSF grants OCE-1032285, IIS-1319874, and CMMI-1436284	0.7	2
40	IFAC-PapersOnLine, 2016 , 49, 182-187 A Kriged Compressive Sensing Approach to Reconstruct Acoustic Fields From Measurements Collected by Underwater Vehicles. <i>IEEE Journal of Oceanic Engineering</i> , 2021 , 46, 294-306	3.3	2
39	Contention-resolving model predictive control for an intelligent intersection traffic model. <i>Discrete Event Dynamic Systems: Theory and Applications</i> , 2021 , 31, 407-437	1	2
38	A Distributed Level Curve Tracking Control Law for Multi-Agent Systems 2018,		2
37	An Improved Algorithm for Motion Tomography by Incorporating Vehicle Travel Time 2018,		2
36	Swing-Reducing Flight Control System for an Underactuated Indoor Miniature Autonomous Blimp. <i>IEEE/ASME Transactions on Mechatronics</i> , 2021 , 26, 1895-1904	5.5	2
35	Tracking moving mesoscale eddies with underwater gliders under autonomous prediction and control. <i>Control Engineering Practice</i> , 2021 , 113, 104839	3.9	2
34	Adaptiveness and consistency of expert based learning algorithms selecting reactions to human movements 2017 ,		1
33	Distributed Traversability Analysis of Flow Field Under Communication Constraints. <i>IEEE Journal of Oceanic Engineering</i> , 2019 , 44, 683-692	3.3	1
32	A model for controlling the resting membrane potential of cells using nanoparticles 2014,		1
31	Cooperative parameter identification of advection-diffusion processes using a mobile sensor network 2017 ,		1
30	Extending a routing protocol for mobile robot mesh networking 2017,		1
29	Moth-inspired plume tracing via autonomous underwaer vehicle with only a pair of separated chemical sensors 2015 ,		1
28	An adaptive control design for 3D curve tracking based on robust forward invariance 2013,		1

27	Controlled Lagrangian particle tracking error under biased flow prediction 2013,		1
26	A bio-inspired robust 3D plume tracking strategy using mobile sensor networks 2013 ,		1
25	Curvature based cooperative exploration of three dimensional scalar fields 2010,		1
24	Tracking performance under time delay and asynchronicity in distributed camera systems 2009,		1
23	Self-triggered three-dimensional coordinated path following of disk-type autonomous underwater gliders based on low-frequency learning fuzzy predictors. <i>Ocean Engineering</i> , 2021 , 242, 110104	3.9	1
22	Computing Largest Tolerable Disturbance Sets 2018 ,		1
21	An LSTM based Kalman Filter for Spatio-temporal Ocean Currents Assimilation 2019,		1
20	Biomolecular Systems Engineering: Unlocking the Potential of Engineered Allostery via the Lactose Repressor Topology. <i>Annual Review of Biophysics</i> , 2021 , 50, 303-321	21.1	1
19	Improved trajectory tracing of underwater vehicles for flow field mapping. <i>International Journal of Intelligent Robotics and Applications</i> ,1	1.7	1
18	Adaptive planar curve tracking control with unknown curvature 2016,		1
17	A Multi-Layer Swarm Control Model for Information Propagation and Multi-Tasking 2019,		1
16	Contention-Resolving Model Predictive Control for Coordinating Automated Vehicles at a Traffic Intersection 2019 ,		1
15	A Distributed Active Perception Strategy for Source Seeking and Level Curve Tracking. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	1
15		5.9	1
	Transactions on Automatic Control, 2021 , 1-1	5.9	
14	Transactions on Automatic Control, 2021, 1-1 Underwater acoustic intensity field reconstruction by kriged compressive sensing 2018,	5.9	1
13	Transactions on Automatic Control, 2021, 1-1 Underwater acoustic intensity field reconstruction by kriged compressive sensing 2018, Evaluating Acoustic Communication Performance of Micro AUV in Confined Space 2018,	5.9	1

LIST OF PUBLICATIONS

9	Single non-noble metal atom doped CN catalysts for chemoselective hydrogenation of 3-nitrostyrene. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 25761-25768	3.6	О	
8	A Combined Path Planning and Path Following Method for Underwater Glider Navigation in a Strong, Dynamic Flow Field 2018 ,		O	
7	Bounded Cost Path Planning for Underwater Vehicles Assisted by a Time-Invariant Partitioned Flow Field Model. <i>Frontiers in Robotics and AI</i> , 2021 , 8, 575267	2.8	0	
6	Bayesian Learning Model Predictive Control for Process-Aware Source Seeking 2022 , 6, 692-697		O	
5	Mechanism of Selective Hydrogenation of 4-Nitrophenylacetylene Using PtIn Intermetallic Nanoparticles: The Role of Hydrogen Coverage. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 23803-2381	2 ^{3.8}		
4	A Learning Algorithm to Select Consistent Reactions to Human Movements 2017 , 111-130			
3	An algorithm for computing robust forward invariant sets of two dimensional nonlinear systems. <i>Asian Journal of Control</i> , 2020 , 23, 2403	1.7		
2	Adaptiveness and consistency of a class of online ensemble learning algorithms. <i>International Journal of Robust and Nonlinear Control</i> , 2021 , 31, 2018-2043	3.6		
1	Autopilot design of a class of miniature autonomous blimps enabled by switched controllers. <i>International Journal of Intelligent Robotics and Applications</i> ,1	1.7		