Tongjiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7206339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hot Coronal Loop Oscillations Observed by SUMER: Slow Magnetosonic Wave Damping by Thermal Conduction. Astrophysical Journal, 2002, 580, L85-L88.	4.5	231
2	Doppler Shift Oscillations of Hot Solar Coronal Plasma Seen by SUMER: A Signature of Loop Oscillations?. Astrophysical Journal, 2002, 574, L101-L104.	4.5	213
3	Imaging coronal magnetic-field reconnection in a solar flare. Nature Physics, 2013, 9, 489-493.	16.7	197
4	Hot coronal loop oscillations observed with SUMER: Examples and statistics. Astronomy and Astrophysics, 2003, 406, 1105-1121.	5.1	176
5	Slow-mode standing waves observed by SUMER in hot coronal loops. Astronomy and Astrophysics, 2003, 402, L17-L20.	5.1	162
6	Vertical oscillations of a coronal loop observed by TRACE. Astronomy and Astrophysics, 2004, 421, L33-L36.	5.1	140
7	PERSISTENT DOPPLER SHIFT OSCILLATIONS OBSERVED WITH <i>HINODE </i> /EIS IN THE SOLAR CORONA: SPECTROSCOPIC SIGNATURES OF ALFVÉNIC WAVES AND RECURRING UPFLOWS. Astrophysical Journal, 2012, 759, 144.	4.5	134
8	Standing Slow-Mode Waves in Hot Coronal Loops: Observations, Modeling, and Coronal Seismology. Space Science Reviews, 2011, 158, 397-419.	8.1	131
9	<i>Hinode</i> observations of transverse waves with flows in coronal loops. Astronomy and Astrophysics, 2008, 482, L9-L12.	5.1	125
10	Hinode/EIS observations of propagating low-frequency slow magnetoacoustic waves in fan-like coronal loops. Astronomy and Astrophysics, 2009, 503, L25-L28.	5.1	91
11	GLOBAL SAUSAGE OSCILLATION OF SOLAR FLARE LOOPS DETECTED BY THE INTERFACE REGION IMAGING SPECTROGRAPH. Astrophysical Journal Letters, 2016, 823, L16.	8.3	82
12	Determination of the Coronal Magnetic Field from Hot‣oop Oscillations Observed by SUMER and SXT. Astrophysical Journal, 2007, 656, 598-609.	4.5	79
13	PROPAGATING SLOW MAGNETOACOUSTIC WAVES IN CORONAL LOOPS OBSERVED BY <i>HINODE</i> /EIS. Astrophysical Journal, 2009, 696, 1448-1460.	4.5	76
14	The Large cale Coronal Field Structure and Source Region Features for a Halo Coronal Mass Ejection. Astrophysical Journal, 2002, 572, 580-597.	4.5	71
15	Initiation of hot coronal loop oscillations: Spectral features. Astronomy and Astrophysics, 2005, 435, 753-764.	5.1	66
16	SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS. Astrophysical Journal, 2012, 754, 111.	4.5	65
17	EVIDENCE OF THERMAL CONDUCTION SUPPRESSION IN A SOLAR FLARING LOOP BY CORONAL SEISMOLOGY OF SLOW-MODE WAVES. Astrophysical Journal Letters, 2015, 811, L13.	8.3	63
18	Slow-Mode Magnetoacoustic Waves in Coronal Loops. Space Science Reviews, 2021, 217, 1.	8.1	62

TONGJIANG WANG

#	Article	IF	CITATIONS
19	Forward Modeling of Hot Loop Oscillations Observed by SUMER and SXT. Astrophysical Journal, 2007, 659, L173-L176.	4.5	47
20	Magnetohydrodynamic Waves in Open Coronal Structures. Space Science Reviews, 2021, 217, 1.	8.1	41
21	THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODELING OF PROPAGATING DISTURBANCES IN FAN-LIKE CORONAL LOOPS. Astrophysical Journal Letters, 2013, 775, L23.	8.3	39
22	AN ESTIMATE OF THE MAGNETIC FIELD STRENGTH ASSOCIATED WITH A SOLAR CORONAL MASS EJECTION FROM LOW FREQUENCY RADIO OBSERVATIONS. Astrophysical Journal, 2014, 796, 56.	4.5	39
23	Energy leakage as an attenuation mechanism for vertical kink oscillations in solar coronal wave guides. Astronomy and Astrophysics, 2007, 462, 1127-1135.	5.1	37
24	Strength of the Solar Coronal Magnetic Field – A Comparison of Independent Estimates Using Contemporaneous Radio and White-Light Observations. Solar Physics, 2017, 292, 1.	2.5	30
25	Identification of different types of kink modes in coronal loops: principles and application to TRACE results. Astronomy and Astrophysics, 2008, 489, 1307-1317.	5.1	29
26	Direct Estimates of the Solar Coronal Magnetic Field Using Contemporaneous Extreme-ultraviolet, Radio, and White-light Observations. Astrophysical Journal, 2019, 881, 24.	4.5	25
27	GLOBAL CORONAL SEISMOLOGY IN THE EXTENDED SOLAR CORONA THROUGH FAST MAGNETOSONIC WAVES OBSERVED BY <i>STEREO</i> SECCHI COR1. Astrophysical Journal, 2013, 776, 55.	4.5	24
28	Effect of Transport Coefficients on Excitation of Flare-induced Standing Slow-mode Waves in Coronal Loops. Astrophysical Journal, 2018, 860, 107.	4.5	24
29	Role of Compressive Viscosity and Thermal Conductivity on the Damping of Slow Waves in Coronal Loops with and Without Heating–Cooling Imbalance. Solar Physics, 2021, 296, 1.	2.5	22
30	Determination of Transport Coefficients by Coronal Seismology of Flare-induced Slow-mode Waves: Numerical Parametric Study of a 1D Loop Model. Astrophysical Journal, 2019, 886, 2.	4.5	20
31	Fe XIX observations of active region brightenings in the corona. Astronomy and Astrophysics, 2006, 455, 1105-1113.	5.1	20
32	LOW-FREQUENCY OBSERVATIONS OF DRIFTING, NON-THERMAL CONTINUUM RADIO EMISSION ASSOCIATED WITH THE SOLAR CORONAL MASS EJECTIONS. Astrophysical Journal, 2013, 778, 30.	4.5	19
33	Validation of Spherically Symmetric Inversion by Use of a Tomographically Reconstructed Three-Dimensional Electron Density of the Solar Corona. Solar Physics, 2014, 289, 3723-3745.	2.5	18
34	Simultaneous Near-Sun Observations of a Moving Type IV Radio Burst and the Associated White-Light Coronal Mass Ejection. Solar Physics, 2016, 291, 1405-1416.	2.5	18
35	Variation in Coronal Activity from Solar Cycle 24 Minimum to Maximum Using Three-Dimensional Reconstructions of the Coronal Electron Density from STEREO/COR1. Solar Physics, 2017, 292, 1.	2.5	16
36	Effect of Thermal Conductivity, Compressive Viscosity and Radiative Cooling on the Phase Shift of Propagating Slow Waves with and Without Heating–Cooling Imbalance. Solar Physics, 2021, 296, 1.	2.5	16

TONGJIANG WANG

#	Article	IF	CITATIONS
37	Excitation of flare-induced waves in coronal loops and the effects of radiative cooling. Advances in Space Research, 2018, 61, 645-654.	2.6	15
38	Role of Non-ideal Dissipation with Heating–Cooling Misbalance on the Phase Shifts of Standing Slow Magnetohydrodynamic Waves. Solar Physics, 2022, 297, 1.	2.5	14
39	Torsional Alfvénic Oscillations Discovered in the Magnetic Free Energy during Solar Flares. Astrophysical Journal, 2020, 891, 99.	4.5	9
40	Addendum to: Strength of the Solar Coronal Magnetic Field – A Comparison of Independent Estimates Using Contemporaneous Radio and White-Light Observations. Solar Physics, 2017, 292, 1.	2.5	8
41	Excitation and Damping of Slow Magnetosonic Waves in Flaring Hot Coronal Loops: Effects of Compressive Viscosity. Astrophysical Journal, 2022, 926, 64.	4.5	8
42	New Results on the Direct Observations of Thermal Radio Emission from a Solar Coronal Mass Ejection. Geophysical Research Letters, 2021, 48, e2020GL091048.	4.0	4
43	Evidence of thermal conduction suppression in hot coronal loops: supplementary results. Proceedings of the International Astronomical Union, 2015, 11, 202-208.	0.0	2
44	Quantitative Evaluation of Coronal Magnetic Field Models Using Tomographic Reconstructions of Electron Density. Astrophysical Journal, 2022, 928, 131.	4.5	1
45	Editorial to the Topical Collection: Oscillatory Processes in Solar and Stellar Coronae. Space Science Reviews, 2022, 218, 1.	8.1	1