Enriqueta Antico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7206288/publications.pdf

Version: 2024-02-01

80 2,154 papers citations

230014 286692 43
h-index g-index

80 80 all docs citations

80 times ranked 2338 citing authors

#	Article	IF	CITATIONS
1	Effective concentration signature of Zn in a natural water derived from various speciation techniques. Science of the Total Environment, 2022, 806, 151201.	3.9	4
2	Fluoride removal from natural waters by polymer inclusion membranes. Journal of Membrane Science, 2022, 644, 120161.	4.1	13
3	Preparation of new polymeric phases for thin-film liquid phase microextraction (TF-LPME) of selected organic pollutants. Microchemical Journal, 2022, 175, 107120.	2.3	7
4	Determination of elemental bioavailability in soils and sediments by microwave induced plasma optical emission spectrometry (MIP-OES): Matrix effects and calibration strategies. Talanta, 2022, 240, 123166.	2.9	6
5	New Insights on the Effects of Water on Polymer Inclusion Membranes Containing Aliquat 336 Derivatives as Carriers. Membranes, 2022, 12, 192.	1.4	7
6	Preparation and Characterization of Nanoparticle-Doped Polymer Inclusion Membranes. Application to the Removal of Arsenate and Phosphate from Waters. Materials, 2021, 14, 878.	1.3	12
7	A Polymer Inclusion Membrane for Sensing Metal Complexation in Natural Waters. Applied Sciences (Switzerland), 2021, 11, 10404.	1.3	2
8	Silencing against the conserved NAC domain of the potato StNAC103 reveals new NAC candidates to repress the suberin associated waxes in phellem. Plant Science, 2020, 291, 110360.	1.7	17
9	Investigation of Volatiles in Cork Samples Using Chromatographic Data and the Superposing Significant Interaction Rules (SSIR) Chemometric Tool. Biomolecules, 2020, 10, 896.	1.8	3
10	A novel Cyphos IL 104-based polymer inclusion membrane (PIM) probe to mimic biofilm zinc accumulation. Science of the Total Environment, 2020, 715, 136938.	3.9	14
11	Chloroanisoles and Other Chlorinated Compounds in Cork from Different Geographical Areas. Toxics, 2019, 7, 49.	1.6	2
12	Automatic determination of arsenate in drinking water by flow analysis with dual membrane-based separation. Food Chemistry, 2019, 283, 232-238.	4.2	17
13	First Report on a Solvent-Free Preparation of Polymer Inclusion Membranes with an Ionic Liquid. Molecules, 2019, 24, 1845.	1.7	10
14	A new extraction phase based on a polymer inclusion membrane for the detection of chlorpyrifos, diazinon and cyprodinil in natural water samples. Talanta, 2018, 185, 291-298.	2.9	35
15	Polymer inclusion membrane to access Zn speciation: Comparison with root uptake. Science of the Total Environment, 2018, 622-623, 316-324.	3.9	20
16	Design of a Hollow Fiber Supported Liquid Membrane System for Zn Speciation in Natural Waters. Membranes, 2018, 8, 88.	1.4	4
17	The Use of a Polymer Inclusion Membrane for Arsenate Determination in Groundwater. Water (Switzerland), 2018, 10, 1093.	1.2	11
18	Comparison of different speciation techniques to measure Zn availability in hydroponic media. Analytica Chimica Acta, 2018, 1035, 32-43.	2.6	9

#	Article	IF	Citations
19	Electrochemical Characterization of a Polymer Inclusion Membrane Made of Cellulose Triacetate and Aliquat 336 and Its Application to Sulfonamides Separation. Separations, 2018, 5, 5.	1.1	10
20	Tuning physicochemical, electrochemical and transport characteristics of polymer inclusion membrane by varying the counter-anion of the ionic liquid Aliquat 336. Journal of Membrane Science, 2017, 529, 87-94.	4.1	33
21	Titanium dioxide solid phase for inorganic species adsorption and determination: the case of arsenic. Environmental Science and Pollution Research, 2017, 24, 10939-10948.	2.7	6
22	Survey of Heavy Metal Contamination in Water Sources in the Municipality of Torola, El Salvador, through In Situ Sorbent Extraction. Water (Switzerland), 2017, 9, 877.	1.2	5
23	Silencing of the potato <i>StNAC103</i> gene enhances the accumulation of suberin polyester and associated wax in tuber skin. Journal of Experimental Botany, 2016, 67, 5415-5427.	2.4	56
24	The Identification and Quantification of Suberin Monomers of Root and Tuber Periderm from Potato (<i>Solanum tuberosum</i>) as Fatty Acyl <i>tert</i> -Butyldimethylsilyl Derivatives. Phytochemical Analysis, 2016, 27, 326-335.	1.2	20
25	Assessment of the effect of UV and chlorination in the transformation of fragrances in aqueous samples. Chemosphere, 2015, 125, 25-32.	4.2	18
26	Monitoring of sixteen fragrance allergens and two polycyclic musks in wastewater treatment plants by solid phase microextraction coupled to gas chromatography. Chemosphere, 2015, 119, 363-370.	4.2	52
27	Polymer inclusion membranes (PIMs) with the ionic liquid (IL) Aliquat 336 as extractant: Effect of base polymer and IL concentration on their physical–chemical and elastic characteristics. Journal of Membrane Science, 2014, 455, 312-319.	4.1	79
28	A novel low-cost detection method for screening of arsenic in groundwater. Environmental Science and Pollution Research, 2014, 21, 11682-11688.	2.7	21
29	Migration of Components from Cork Stoppers to Food: Challenges in Determining Inorganic Elements in Food Simulants. Journal of Agricultural and Food Chemistry, 2014, 62, 5690-5698.	2.4	5
30	Polymer inclusion membranes. Arsenic in the Environment Proceedings, 2014, , 778-779.	0.0	O
31	Screen-printed electrodes incorporated in a flow system for the decentralized monitoring of lead, cadmium and copper in natural and wastewater samples. International Journal of Environmental Analytical Chemistry, 2013, 93, 872-883.	1.8	4
32	Odourâ€causing compounds in air samples: Gas–liquid partition coefficients and determination using solidâ€phase microextraction and <scp>GC</scp> with mass spectrometric detection. Journal of Separation Science, 2013, 36, 1045-1053.	1.3	10
33	Development of a method for the monitoring of odor-causing compounds in atmospheres surrounding wastewater treatment plants. Journal of Separation Science, 2013, 36, 1621-1628.	1.3	11
34	Mass spectrometry identification of alkyl-substituted pyrazines produced by Pseudomonas spp. isolates obtained from wine corks. Food Chemistry, 2013, 138, 2382-2389.	4.2	18
35	A Novel Membrane–based Approach for the Remote Screening of as in Waters. Procedia Engineering, 2012, 44, 801-803.	1.2	1
36	Thiacalixarene Derivatives Incorporated in Optical-Sensing Membranes for Metal Ion Recognition. Analytical Letters, 2011, 44, 1241-1253.	1.0	6

#	Article	IF	CITATIONS
37	Development and characterization of polymer inclusion membranes for the separation and speciation of inorganic As species. Journal of Membrane Science, 2011, 383, 88-95.	4.1	59
38	Headspace needle-trap analysis of priority volatile organic compounds from aqueous samples: Application to the analysis of natural and waste waters. Journal of Chromatography A, 2011, 1218, 8131-8139.	1.8	60
39	Needle microextraction trap for onâ€site analysis of airborne volatile compounds at ultraâ€trace levels in gaseous samples. Journal of Separation Science, 2011, 34, 2705-2711.	1.3	35
40	Multivariate analysis of volatile compounds detected by headspace solid-phase microextraction/gas chromatography: A tool for sensory classification of cork stoppers. Food Chemistry, 2011, 126, 1978-1984.	4.2	18
41	Odour-causing organic compounds in wastewater treatment plants: Evaluation of headspace solid-phase microextraction as a concentration technique. Journal of Chromatography A, 2011, 1218, 4863-4868.	1.8	27
42	Transport and separation of arsenate and arsenite from aqueous media by supported liquid and anion-exchange membranes. Separation and Purification Technology, 2011, 80, 428-434.	3.9	28
43	Sorbentâ€packed needle microextraction trap for benzene, toluene, ethylbenzene, and xylenes determination in aqueous samples. Journal of Separation Science, 2010, 33, 2833-2840.	1.3	35
44	Modelling of liquid–liquid extraction and liquid membrane separation of arsenic species in environmental matrices. Separation and Purification Technology, 2010, 72, 319-325.	3.9	43
45	Assessment of Environmental Tobacco Smoke Contamination in Public Premises: Significance of 2,5-Dimethylfuran as an Effective Marker. Environmental Science & Environmental Science & 2,5-Dimethylfuran as an Effective Marker. Environmental Science & 2,5-Dimethylfuran as an Effective Marker. Environmental Science & 2,5-Dimethylfuran as 2,5-Dimeth	4.6	29
46	Molecular Fingerprinting by PCR-Denaturing Gradient Gel Electrophoresis Reveals Differences in the Levels of Microbial Diversity for Musty-Earthy Tainted Corks. Applied and Environmental Microbiology, 2009, 75, 1922-1931.	1.4	20
47	Off-Odor Compounds Produced in Cork by Isolated Bacteria and Fungi: A Gas Chromatographyâ^'Mass Spectrometry and Gas Chromatographyâ^'Olfactometry Study. Journal of Agricultural and Food Chemistry, 2009, 57, 7473-7479.	2.4	20
48	Screening of musty-earthy compounds from tainted cork using water-based soaks followed by headspace solid-phase microextraction and gas chromatography–mass spectrometry. European Food Research and Technology, 2008, 227, 1085-1090.	1.6	17
49	Selective Pd(II) and Pt(IV) sorption using novel polymers containing azamacrocycle functional groups. Reactive and Functional Polymers, 2008, 68, 1088-1096.	2.0	16
50	Efficient hollow fiber supported liquid membrane system for the removal and preconcentration of Cr(VI) at trace levels. Separation and Purification Technology, 2008, 62, 389-393.	3.9	74
51	Sensitive and stable monitoring of lead and cadmium in seawater using screen-printed electrode and electrochemical stripping analysis. Analytica Chimica Acta, 2008, 627, 219-224.	2.6	98
52	Internal Standardizationâ^'Atomic Spectrometry and Geographical Pattern Recognition Techniques for the Multielement Analysis and Classification of Catalonian Red Wines. Journal of Agricultural and Food Chemistry, 2007, 55, 219-225.	2.4	41
53	Assessment of the matrix effect on the headspace solid-phase microextraction (HS-SPME) analysis of chlorophenols in wines. Journal of Separation Science, 2007, 30, 722-730.	1.3	17
54	Development of a selective optical sensor for Cr(VI) monitoring in polluted waters. Analytica Chimica Acta, 2007, 594, 162-168.	2.6	25

#	Article	IF	CITATIONS
55	Efficient thiacalix[4]arenes for the extraction and separation of Au(III), Pd(II) and Pt(IV) metal ions from acidic media incorporated in membranes and solid phases. Separation and Purification Technology, 2007, 54, 322-328.	3.9	69
56	Ethanol/Water Extraction Combined with Solid-Phase Extraction and Solid-Phase Microextraction Concentration for the Determination of Chlorophenols in Cork Stoppers. Journal of Agricultural and Food Chemistry, 2006, 54, 627-632.	2.4	14
57	Thiacalix[4]arenes as selective carriers for the transport and separation of gold, palladium and platinum by using supported liquid membrane systems. Desalination, 2006, 200, 112-113.	4.0	6
58	New applications of azamacrocyclic ligands in ion recognition, transport and preconcentration of palladium. Analytica Chimica Acta, 2006, 560, 77-83.	2.6	19
59	Assays on the simultaneous determination and elimination of chloroanisoles and chlorophenols from contaminated cork samples. Journal of Chromatography A, 2006, 1122, 215-221.	1.8	18
60	Selective recovery and preconcentration of mercury with a benzoylthiourea-solid supported liquid membrane system. Analytica Chimica Acta, 2005, 547, 255-261.	2.6	65
61	Highly selective solid-phase extraction and large volume injection for the robust gas chromatography–mass spectrometric analysis of TCA and TBA in wines. Journal of Chromatography A, 2005, 1089, 235-242.	1.8	46
62	Migration of 2,4,6-trichloroanisole from cork stoppers to wine. European Food Research and Technology, 2005, 220, 347-352.	1.6	38
63	Development of solid-phase extraction and solid-phase microextraction methods for the determination of chlorophenols in cork macerate and wine samples. Journal of Chromatography A, 2004, 1047, 15-20.	1.8	71
64	Relationship between sensory and instrumental analysis of 2,4,6-trichloroanisole in wine and cork stoppers. Analytica Chimica Acta, 2004, 513, 291-297.	2.6	42
65	On-line determination of trace levels of palladium by flame atomic absorption spectrometry. Talanta, 2003, 59, 651-657.	2.9	39
66	Liquid–liquid extraction of palladium(II) and gold(III) with N-benzoyl-N′,N′-diethylthiourea and the synthesis of a palladium benzoylthiourea complex. Polyhedron, 2002, 21, 1429-1437.	1.0	64
67	Evaluation of an extraction method in the determination of the 2,4,6-trichloroanisole content of tainted cork. Journal of Chromatography A, 2002, 953, 207-214.	1.8	57
68	THE CHARACTERISATION OF SILVER SORPTION BY CHELATING RESINS CONTAINING THIOL AND AMINE GROUPS. Solvent Extraction and Ion Exchange, 2001, 19, 315-327.	0.8	20
69	CHARACTERISATION OF METALFIX-CHELAMINE AND ITS APPLICATION IN PRECIOUS METAL ADSORPTION. Solvent Extraction and Ion Exchange, 2000, 18, 965-979.	0.8	18
70	Recovery of palladium(II) and gold(III) from diluted liquors using the resin duolite GT-73. Analytica Chimica Acta, 1999, 381, 61-67.	2.6	128
71	Monitoring Pb2+ with optical sensing films. Analytica Chimica Acta, 1999, 388, 327-338.	2.6	39
72	EFFECT OF Y(III) DISTRIBUTION BETWEEN AQUEOUS NITRATE AND ORGANIC D2EHPA SOLUTIONS ON THE Y(III) PRECIPITATION STRIPPING USING OXALIC ACID Solvent Extraction and Ion Exchange, 1999, 17, 277-300.	0.8	15

#	Article	IF	CITATION
73	Chemical pumping of rhodium by a supported liquid membrane containing Aliquat 336 as carrier. Analytica Chimica Acta, 1997, 346, 199-206.	2.6	40
74	SCN∠effect on the palladium(II) transfer in two and three phases systems using triphenylphosphine sulfide as a carrier. Reactive and Functional Polymers, 1996, 28, 103-109.	2.0	6
75	Solvent extraction of yttrium from chloride media by di(2-ethylhexyl)phosphoric acid in kerosene. Speciation studies and gel formation. Analytica Chimica Acta, 1996, 327, 267-276.	2.6	42
76	Separation of $Pd(II)$ and $Cu(II)$ in chloride solutions on a glycol methacrylate gel derivatized with 8-hydroxyquinoline. Journal of Chromatography A, 1995, 706, 159-166.	1.8	9
77	Adsorption of palladium by glycolmethacrylate chelating resins. Analytica Chimica Acta, 1994, 296, 325-332.	2.6	37
78	New sulphur-containing reagents as carriers for the separation of palladium by solid supported liquid membranes. Hydrometallurgy, 1994, 35, 343-352.	1.8	27
79	Role of SCNâ^' in the liquid-liquid extraction of Pd(II) by Kelex 100 in Toluene from aqueous chloride solutions. The equilibrium approach. Analytica Chimica Acta, 1993, 278, 91-97.	2.6	11
80	Study of a Palladium Mass Accelerate Transfer Through a Solid Supported Liquid Membrane Containing Kelex100. Process Metallurgy, 1992, , 1505-1510.	0.1	4