
Jason Eric Box

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7206223/publications.pdf Version: 2024-02-01

IASON EDIC ROX

#	Article	IF	CITATIONS
1	Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nature Climate Change, 2015, 5, 475-480.	18.8	686
2	Key indicators of Arctic climate change: 1971–2017. Environmental Research Letters, 2019, 14, 045010.	5.2	471
3	Higher surface mass balance of the Greenland ice sheet revealed by highâ€resolution climate modeling. Geophysical Research Letters, 2009, 36, .	4.0	430
4	Mass balance of the Greenland ice sheet from 1958 to 2007. Geophysical Research Letters, 2008, 35, .	4.0	344
5	Surface climatology of the Greenland Ice Sheet: Greenland Climate Network 1995-1999. Journal of Geophysical Research, 2001, 106, 33951-33964.	3.3	329
6	Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. Cryosphere, 2012, 6, 821-839.	3.9	327
7	Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere, 2017, 11, 1015-1033.	3.9	310
8	Greenland Ice Sheet Surface Mass Balance Variability (1988–2004) from Calibrated Polar MM5 Output*. Journal of Climate, 2006, 19, 2783-2800.	3.2	251
9	The urgency of Arctic change. Polar Science, 2019, 21, 6-13.	1.2	247
10	Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data. Cryosphere, 2013, 7, 615-630.	3.9	242
11	Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements. Remote Sensing of Environment, 2005, 94, 46-60.	11.0	228
12	UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet. Cryosphere, 2015, 9, 1-11.	3.9	215
13	Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900. Nature, 2015, 528, 396-400.	27.8	210
14	The role of albedo and accumulation in the 2010 melting record in Greenland. Environmental Research Letters, 2011, 6, 014005.	5.2	207
15	Twentieth-Century Global-Mean Sea Level Rise: Is the Whole Greater than the Sum of the Parts?. Journal of Climate, 2013, 26, 4476-4499.	3.2	197
16	Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nature Geoscience, 2014, 7, 95-98.	12.9	196
17	Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland. Journal of Glaciology, 2010, 56, 601-613.	2.2	184
18	An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nature Geoscience, 2012, 5, 427-432.	12.9	180

#	Article	IF	CITATIONS
19	Survey of Greenland instrumental temperature records: 1873-2001. International Journal of Climatology, 2002, 22, 1829-1847.	3.5	177
20	Characteristics of Arctic synoptic activity, 1952?1989. Meteorology and Atmospheric Physics, 1993, 51, 147-164.	2.0	176
21	Mesoscale Modeling of Katabatic Winds over Greenland with the Polar MM5*. Monthly Weather Review, 2001, 129, 2290-2309.	1.4	169
22	State of the Climate in 2017. Bulletin of the American Meteorological Society, 2018, 99, Si-S310.	3.3	160
23	Greenland meltwater storage in firn limited by near-surface ice formation. Nature Climate Change, 2016, 6, 390-393.	18.8	156
24	Greenland Ice Sheet Surface Air Temperature Variability: 1840–2007*. Journal of Climate, 2009, 22, 4029-4049.	3.2	151
25	Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics. Journal of Glaciology, 2007, 53, 257-265.	2.2	150
26	Greenland ice sheet surface mass balance 1991–2000: Application of Polar MM5 mesoscale model and in situ data. Journal of Geophysical Research, 2004, 109, .	3.3	143
27	State of the Climate in 2015. Bulletin of the American Meteorological Society, 2016, 97, Si-S275.	3.3	142
28	State of the Climate in 2013. Bulletin of the American Meteorological Society, 2014, 95, S1-S279.	3.3	138
29	Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet. Remote Sensing of Environment, 2006, 105, 155-171.	11.0	136
30	Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS. Geophysical Research Letters, 2013, 40, 2114-2120.	4.0	136
31	State of the Climate in 2010. Bulletin of the American Meteorological Society, 2011, 92, S1-S236.	3.3	135
32	Sublimation on the Greenland Ice Sheet from automated weather station observations. Journal of Geophysical Research, 2001, 106, 33965-33981.	3.3	132
33	Climate of the Greenland ice sheet using a high-resolution climate model – Part 1: Evaluation. Cryosphere, 2010, 4, 511-527.	3.9	132
34	State of the Climate in 2016. Bulletin of the American Meteorological Society, 2017, 98, Si-S280.	3.3	132
35	State of the Climate in 2012. Bulletin of the American Meteorological Society, 2013, 94, S1-S258.	3.3	129
36	Surface mass balance model intercomparison for the Greenland ice sheet. Cryosphere, 2013, 7, 599-614.	3.9	127

#	Article	IF	CITATIONS
37	Evaluation of Polar MM5 simulations of Greenland's atmospheric circulation. Journal of Geophysical Research, 2001, 106, 33867-33889.	3.3	124
38	State of the Climate in 2011. Bulletin of the American Meteorological Society, 2012, 93, S1-S282.	3.3	121
39	Volcanic influence on centennial to millennial Holocene Greenland temperature change. Scientific Reports, 2017, 7, 1441.	3.3	120
40	An analysis of Icelandic climate since the nineteenth century. International Journal of Climatology, 2004, 24, 1193-1210.	3.5	116
41	Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11944-11948.	7.1	116
42	High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	114
43	A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958–2007). Journal of Geophysical Research, 2010, 115, .	3.3	113
44	GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere, 2020, 14, 3935-3958.	3.9	111
45	Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nature Geoscience, 2015, 8, 647-653.	12.9	107
46	Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland. Remote Sensing of Environment, 2008, 112, 3739-3749.	11.0	106
47	Greenland Ice Sheet Mass Balance Reconstruction. Part II: Surface Mass Balance (1840–2010)*. Journal of Climate, 2013, 26, 6974-6989.	3.2	106
48	Greenlandâ€Wide Seasonal Temperatures During the Last Deglaciation. Geophysical Research Letters, 2018, 45, 1905-1914.	4.0	105
49	Re-evaluation of MODIS MCD43 Greenland albedo accuracy and trends. Remote Sensing of Environment, 2013, 138, 199-214.	11.0	101
50	Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet. Geophysical Research Letters, 2017, 44, 11,463.	4.0	101
51	Root Dynamics, Production and Distribution in Agroecosystems on the Georgia Piedmont Using Minirhizotrons. Journal of Applied Ecology, 1990, 27, 592.	4.0	98
52	lce tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice Sheet. Cryosphere, 2013, 7, 129-140.	3.9	97
53	Mapping daily snow/ice shortwave broadband albedo from Moderate Resolution Imaging Spectroradiometer (MODIS): The improved direct retrieval algorithm and validation with Greenland in situ measurement. Journal of Geophysical Research, 2005, 110, .	3.3	96
54	Greenland Ice Sheet Surface Mass Loss: Recent Developments in Observation and Modeling. Current Climate Change Reports, 2017, 3, 345-356.	8.6	94

#	Article	IF	CITATIONS
55	A decade (2002–2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland. Cryosphere, 2014, 8, 107-121.	3.9	93
56	lce–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers. Cryosphere, 2014, 8, 1457-1468.	3.9	88
57	Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities. Nature Communications, 2018, 9, 1065.	12.8	88
58	State of the Climate in 2014. Bulletin of the American Meteorological Society, 2015, 96, ES1-ES32.	3.3	78
59	The implication of nonradiative energy fluxes dominating Greenland ice sheet exceptional ablation area surface melt in 2012. Geophysical Research Letters, 2016, 43, 2649-2658.	4.0	77
60	State of the Climate in 2008. Bulletin of the American Meteorological Society, 2009, 90, S1-S196.	3.3	74
61	Delta progradation in Greenland driven by increasing glacial mass loss. Nature, 2017, 550, 101-104.	27.8	74
62	A New Monthly Climatology of Global Radiation for the Arctic and Comparisons with NCEP–NCAR Reanalysis and ISCCP-C2 Fields. Journal of Climate, 1998, 11, 121-136.	3.2	73
63	Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014. Cryosphere, 2015, 9, 2009-2025.	3.9	73
64	Liquid Water Flow and Retention on the Greenland Ice Sheet in the Regional Climate Model HIRHAM5: Local and Large-Scale Impacts. Frontiers in Earth Science, 2017, 4, .	1.8	72
65	Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data. Earth System Science Data, 2021, 13, 3819-3845.	9.9	70
66	Oceanic mechanical forcing of a marine-terminating Greenland glacier. Annals of Glaciology, 2012, 53, 181-192.	1.4	69
67	Evidence of meltwater retention within the Greenland ice sheet. Cryosphere, 2013, 7, 1433-1445.	3.9	69
68	Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars. Journal of Geophysical Research F: Earth Surface, 2016, 121, 2381-2398.	2.8	68
69	Intercomparison between In Situ and AVHRR Polar Pathfinder-Derived Surface Albedo over Greenland. Remote Sensing of Environment, 2001, 75, 360-374.	11.0	67
70	Direct measurements of meltwater runoff on the Greenland ice sheet surface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10622-E10631.	7.1	66
71	Global sea-level contribution from Arctic land ice: 1971–2017. Environmental Research Letters, 2018, 13, 125012.	5.2	62
72	Basin-scale partitioning of Greenland ice sheet mass balance components (2007–2011). Earth and Planetary Science Letters, 2015, 409, 89-95.	4.4	61

#	Article	IF	CITATIONS
73	Evaluation of Greenland Ice Sheet Surface Climate in the HIRHAM Regional Climate Model Using Automatic Weather Station Data. Journal of Climate, 2003, 16, 1302-1319.	3.2	59
74	Greenland surface mass-balance observations from the ice-sheet ablation area and local glaciers. Journal of Glaciology, 2016, 62, 861-887.	2.2	59
75	Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet. Journal of Glaciology, 2009, 55, 1072-1082.	2.2	58
76	Hydrologic controls on coastal suspended sediment plumes around the Greenland Ice Sheet. Cryosphere, 2012, 6, 1-19.	3.9	56
77	Greenland Ice Sheet Mass Balance Reconstruction. Part III: Marine Ice Loss and Total Mass Balance (1840–2010). Journal of Climate, 2013, 26, 6990-7002.	3.2	55
78	Minirhizotron Wheat Root Data: Comparisons to Soil Core Root Data. Agronomy Journal, 1993, 85, 1058-1060.	1.8	54
79	Microbial abundance in surface ice on the Greenland Ice Sheet. Frontiers in Microbiology, 2015, 6, 225.	3.5	54
80	On the reflectance spectroscopy of snow. Cryosphere, 2018, 12, 2371-2382.	3.9	53
81	Global Warming and the Greenland Ice Sheet. Climatic Change, 2004, 63, 201-221.	3.6	52
82	Glacier velocities from time-lapse photos: technique development and first results from the Extreme Ice Survey (EIS) in Greenland. Journal of Glaciology, 2010, 56, 723-734.	2.2	51
83	Greenland marine-terminating glacier area changes: 2000–2010. Annals of Glaciology, 2011, 52, 91-98.	1.4	51
84	Greenland Ice Sheet Mass Balance Reconstruction. Part I: Net Snow Accumulation (1600–2009). Journal of Climate, 2013, 26, 3919-3934.	3.2	49
85	Retrieval of Snow Properties from the Sentinel-3 Ocean and Land Colour Instrument. Remote Sensing, 2019, 11, 2280.	4.0	49
86	Minirhizotron Installation Techniques for Investigating Root Responses to Drought and Oxygen Stresses. Soil Science Society of America Journal, 1989, 53, 115-118.	2.2	48
87	Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release. Cryosphere, 2017, 11, 1371-1386.	3.9	48
88	The Effects of Surface Slaty Fragments on Soil Erosion by Water1. Soil Science Society of America Journal, 1981, 45, 111.	2.2	47
89	A multi-proxy paleolimnological reconstruction of Holocene climate conditions in the Great Basin, United States. Quaternary Research, 2009, 72, 347-358.	1.7	47
90	Southeast Greenland high accumulation rates derived from firn cores and ground-penetrating radar. Annals of Glaciology, 2013, 54, 322-332.	1.4	47

#	Article	IF	CITATIONS
91	Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age. Cryosphere, 2014, 8, 1497-1507.	3.9	45
92	Greenland Ice Sheet solid ice discharge from 1986 through 2017. Earth System Science Data, 2019, 11, 769-786.	9.9	45
93	Surface mass-balance changes of the Greenland ice sheetc since 1866. Annals of Glaciology, 2009, 50, 178-184.	1.4	44
94	How robust are in situ observations for validating satelliteâ€derived albedo over the dark zone of the Greenland Ice Sheet?. Geophysical Research Letters, 2017, 44, 6218-6225.	4.0	43
95	Changes in Greenland's peripheral glaciers linked to the North Atlantic Oscillation. Nature Climate Change, 2018, 8, 48-52.	18.8	42
96	Recent changes in north-west Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past-temperature reconstructions. Cryosphere, 2015, 9, 1481-1504.	3.9	41
97	Physical Conditions of Fast Glacier Flow: 1. Measurements From Boreholes Drilled to the Bed of Store Glacier, West Greenland. Journal of Geophysical Research F: Earth Surface, 2018, 123, 324-348.	2.8	41
98	The recent warming trend in North Greenland. Geophysical Research Letters, 2017, 44, 6235-6243.	4.0	40
99	State of the Climate in 2005. Bulletin of the American Meteorological Society, 2006, 87, s1-s102.	3.3	39
100	Brief communication Greenland's shrinking ice cover: "fast times" but not that fast. Cryosphere, 2012, 6, 533-537.	3.9	39
101	Carbon Dioxide and the Photosynthesis of Field Crops: A Metered Carbon Dioxide Release in Cotton Under Field Conditions 1. Agronomy Journal, 1973, 65, 7-11.	1.8	38
102	The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet. Cryosphere, 2020, 14, 3785-3810.	3.9	38
103	On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr. Climate of the Past, 2013, 9, 583-596.	3.4	37
104	Extraordinary runoff from the Greenland ice sheet in 2012 amplified by hypsometry and depleted firn retention. Cryosphere, 2016, 10, 1147-1159.	3.9	37
105	Derivation of High Spatial Resolution Albedo from UAV Digital Imagery: Application over the Greenland Ice Sheet. Frontiers in Earth Science, 2017, 5, .	1.8	37
106	Firn data compilation reveals widespread decrease of firn air content in western Greenland. Cryosphere, 2019, 13, 845-859.	3.9	37
107	Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland. Cryosphere, 2015, 9, 2163-2181.	3.9	36
108	Surface Meltwater Impounded by Seasonal Englacial Storage in West Greenland. Geophysical Research Letters, 2018, 45, 10,474.	4.0	36

#	Article	IF	CITATIONS
109	Centennial response of Greenland's three largest outlet glaciers. Nature Communications, 2020, 11, 5718.	12.8	36
110	A Dozen Years of Temperature Observations at the Summit: Central Greenland Automatic Weather Stations 1987–99. Journal of Applied Meteorology and Climatology, 2001, 40, 741-752.	1.7	35
111	Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments. Earth System Science Data, 2013, 5, 277-287.	9.9	35
112	Upper-air temperatures around Greenland: 1964–2005. Geophysical Research Letters, 2006, 33, .	4.0	34
113	A Snow Density Dataset for Improving Surface Boundary Conditions in Greenland Ice Sheet Firn Modeling. Frontiers in Earth Science, 2018, 6, .	1.8	34
114	Explanation for the Stomatal Response of Excised Leaves to Kinetin. Nature, 1970, 227, 87-88.	27.8	33
115	A first constraint on basal melt-water production of the Greenland ice sheet. Nature Communications, 2021, 12, 3461.	12.8	33
116	Carbon dating reveals a seasonal progression in the source of particulate organic carbon exported from the Greenland Ice Sheet. Geophysical Research Letters, 2017, 44, 6209-6217.	4.0	32
117	Regional Greenland accumulation variability from Operation IceBridge airborne accumulation radar. Cryosphere, 2017, 11, 773-788.	3.9	32
118	Calving Behavior at Rink Isbræ, West Greenland, from Time-Lapse Photos. Arctic, Antarctic, and Alpine Research, 2016, 48, 263-277.	1.1	31
119	Evidence of Isotopic Fractionation During Vapor Exchange Between the Atmosphere and the Snow Surface in Greenland. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2932-2945.	3.3	30
120	Soil Water Effects on Noâ€ŧill Corn Production in Strip and Completely Killed Mulches 1. Agronomy Journal, 1980, 72, 797-802.	1.8	29
121	The Arctic. Bulletin of the American Meteorological Society, 2020, 101, S239-S286.	3.3	29
122	Causes of Greenland temperature variability over the past 4000 yr: implications for northern hemispheric temperature changes. Climate of the Past, 2013, 9, 2299-2317.	3.4	28
123	Ice discharge uncertainties in Northeast Greenland from boundary conditions and climate forcing of an ice flow model. Journal of Geophysical Research F: Earth Surface, 2015, 120, 29-54.	2.8	27
124	Quantifying the Surface Energy Fluxes in South Greenland during the 2012 High Melt Episodes Using In-situ Observations. Frontiers in Earth Science, 2016, 4, .	1.8	27
125	Abrupt shift in the observed runoff from the southwestern Greenland ice sheet. Science Advances, 2017, 3, e1701169.	10.3	27
126	Reconstructing Greenland Ice Sheet meltwater discharge through the Watson River (1949–2017). Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	27

#	Article	IF	CITATIONS
127	Greenland ice sheet mass balance from 1840 through next week. Earth System Science Data, 2021, 13, 5001-5025.	9.9	26
128	Greenland Ice Sheet Rainfall, Heat and Albedo Feedback Impacts From the Midâ€August 2021 Atmospheric River. Geophysical Research Letters, 2022, 49, .	4.0	25
129	Greenland high-elevation mass balance: inference and implication of reference period (1961–90) imbalance. Annals of Glaciology, 2015, 56, 105-117.	1.4	24
130	Firn cold content evolution at nine sites on the Greenland ice sheet between 1998 and 2017. Journal of Glaciology, 2020, 66, 591-602.	2.2	24
131	The Determination of Snow Albedo from Satellite Measurements Using Fast Atmospheric Correction Technique. Remote Sensing, 2020, 12, 234.	4.0	24
132	Proglacial river stage, discharge, and temperature datasets from the Akuliarusiarsuup Kuua River northern tributary, Southwest Greenland, 2008–2011. Earth System Science Data, 2012, 4, 1-12.	9.9	24
133	Decadalâ€scale sensitivity of Northeast Greenland ice flow to errors in surface mass balance using ISSM. Journal of Geophysical Research F: Earth Surface, 2013, 118, 667-680.	2.8	23
134	A sensitivity study of annual area change for Greenland ice sheet marine terminating outlet glaciers: 1999–2013. Journal of Glaciology, 2016, 62, 72-81.	2.2	23
135	Bacterial Dynamics in Supraglacial Habitats of the Greenland Ice Sheet. Frontiers in Microbiology, 2019, 10, 1366.	3.5	23
136	Rainfall on the Greenland Ice Sheet: Presentâ€Day Climatology From a Highâ€Resolution Nonâ€Hydrostatic Polar Regional Climate Model. Geophysical Research Letters, 2021, 48, e2021GL092942.	4.0	23
137	The Arctic. Bulletin of the American Meteorological Society, 2021, 102, S263-S316.	3.3	23
138	Rowâ€Plant Spacing and Broiler Litter Effects on Intercropping Corn in Tall Fescue 1. Agronomy Journal, 1980, 72, 5-10.	1.8	22
139	Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balanceÂ(2003–2012). Cryosphere, 2016, 10, 1965-1989.	3.9	21
140	Greenland, Canadian and Icelandic land-ice albedo grids (2000–2016). Geological Survey of Denmark and Greenland Bulletin, 0, 38, 53-56.	2.0	21
141	Drivers of Firn Density on the Greenland Ice Sheet Revealed by Weather Station Observations and Modeling. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2563-2576.	2.8	19
142	Carbon Dioxide and the Photosynthesis of Field Crops. A Tracer Examination of Turbulent Transfer Theory 1. Agronomy Journal, 1973, 65, 574-578.	1.8	17
143	Anion Transport in a Piedmont Ultisol: I. Field-Scale Parameters. Soil Science Society of America Journal, 1996, 60, 755-761.	2.2	17
144	Storage and export of microbial biomass across the western Greenland Ice Sheet. Nature Communications, 2021, 12, 3960.	12.8	17

#	Article	IF	CITATIONS
145	Modern solar maximum forced late twentieth century Greenland cooling. Geophysical Research Letters, 2015, 42, 5992-5999.	4.0	16
146	Application of PROMICE Qâ€Transect in Situ Accumulation and Ablation Measurements (2000–2017) to Constrain Mass Balance at the Southern Tip of the Greenland Ice Sheet. Journal of Geophysical Research F: Earth Surface, 2018, 123, 1235-1256.	2.8	16
147	An integrated index of recent pan-Arctic climate change. Environmental Research Letters, 2019, 14, 035006.	5.2	16
148	Darkening of the Greenland ice sheet due to the melt albedo feedback observed at PROMICE weather stations. Geological Survey of Denmark and Greenland Bulletin, 0, 28, 69-72.	2.0	16
149	Automatic weather stations for basic and applied glaciological research. Geological Survey of Denmark and Greenland Bulletin, 0, 33, 69-72.	2.0	15
150	Application of a midge-based inference model for air temperature reveals evidence of late-20th century warming in sub-alpine lakes in the central Great Basin, United States. Quaternary International, 2010, 215, 15-26.	1.5	14
151	Greenland bare-ice albedo from PROMICE automatic weather station measurements and Sentinel-3 satellite observations. Geological Survey of Denmark and Greenland Bulletin, 0, 47, .	2.0	14
152	Effects of Soil Moisture, Temperature, and Fertility on Yield and Quality of Irrigated Potatoes in the Southern Plains 1. Agronomy Journal, 1963, 55, 492-494.	1.8	13
153	Challenges of Quantifying Meltwater Retention in Snow and Firn: An Expert Elicitation. Frontiers in Earth Science, 2016, 4, .	1.8	13
154	Simulating ice thickness and velocity evolution of Upernavik IsstrÃ,m 1849–2012 by forcing prescribed terminus positions in ISSM. Cryosphere, 2018, 12, 1511-1522.	3.9	13
155	Attribution of Greenland's ablating ice surfaces on ice sheet albedo using unmanned aerial systems. The Cryosphere Discussions TCD, 0, , 1-23.	0.0	13
156	Greenland ice sheet surface mass-balance variability: 1991–2003. Annals of Glaciology, 2005, 42, 90-94.	1.4	11
157	Investigating Controls on the Formation and Distribution of Wintertime Storage of Water in Supraglacial Lakes. Frontiers in Earth Science, 2020, 8, .	1.8	10
158	Chemical Fallow in Dryland Cropping Sequences 1. Agronomy Journal, 1967, 59, 175-177.	1.8	9
159	Greenland ice sheet mass balance assessed by PROMICE (1995–2015). Geological Survey of Denmark and Greenland Bulletin, 0, 43, .	2.0	9
160	Recent changes in Icelandic climate. Weather, 2006, 61, 3-9.	0.7	8
161	The Determination of the Snow Optical Grain Diameter and Snowmelt Area on the Greenland Ice Sheet Using Spaceborne Optical Observations. Remote Sensing, 2022, 14, 932.	4.0	8
162	Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice. Eos, 2013, 94, 100-100.	0.1	7

#	Article	IF	CITATIONS
163	Update of annual calving front lines for 47 marine terminating outlet glaciers in Greenland (1999–2018). Geological Survey of Denmark and Greenland Bulletin, 0, 43, .	2.0	7
164	Ecological Modeling of the Supraglacial Ecosystem: A Process-based Perspective. Frontiers in Earth Science, 2017, 5, .	1.8	6
165	Nitrate addition has minimal shortâ€ŧerm impacts on Greenland ice sheet supraglacial prokaryotes. Environmental Microbiology Reports, 2017, 9, 144-150.	2.4	5
166	Mountain Temperature Changes From Embedded Sensors Spanning 2000 m in Great Basin National Park, 2006–2018. Frontiers in Earth Science, 2020, 8, .	1.8	5
167	Record Summer Melt in Greenland in 2010. Eos, 2011, 92, 126-126.	0.1	4
168	WMO evaluation of northern hemispheric coldest temperature: â^69.6 °C at Klinck, Greenland, 22 December 1991. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 21-29.	2.7	4
169	Regional climate-model performance in Greenland firn derived from in situ observations. Geological Survey of Denmark and Greenland Bulletin, 0, 35, 75-78.	2.0	2
170	Editorial: Melt Water Retention Processes in Snow and Firn on Ice Sheets and Glaciers: Observations and Modeling. Frontiers in Earth Science, 2018, 6, .	1.8	1
171	Steffen K, Abdalati W and Stroeve J (1993) Climate sensitivity studies of the Greenland ice sheet using satellite AVHRR, SMMR SSM/I and in situ data. Meteorology and Atmospheric Physics 51(3–4): 239–258. DOI:10.1007/bf01030497. Progress in Physical Geography, 2021, 45, 632-638.	3.2	1
172	Sea-level rise in Denmark: Bridging local reconstructions and global projections. , 0, 43, .		0