
Askhat N Jumabekov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7205812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Directional Charge-Carrier Transport in Oriented Benzodithiophene Covalent Organic Framework Thin Films. ACS Nano, 2017, 11, 2706-2713.	14.6	117
2	Dipole-field-assisted charge extraction in metal-perovskite-metal back-contact solar cells. Nature Communications, 2017, 8, 613.	12.8	66
3	Back-contact perovskite solar cells with honeycomb-like charge collecting electrodes. Nano Energy, 2018, 50, 710-716.	16.0	44
4	PMMA Thin Film with Embedded Carbon Quantum Dots for Post-Fabrication Improvement of Light Harvesting in Perovskite Solar Cells. Nanomaterials, 2020, 10, 291.	4.1	44
5	Quantum-Dot-Sensitized Solar Cells with Water-Soluble and Air-Stable PbS Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 5142-5149.	3.1	31
6	Solution-processed antireflective coating for back-contact perovskite solar cells. Optics Express, 2020, 28, 12650.	3.4	30
7	Comparison of Solid-State Quantum-Dot-Sensitized Solar Cells with <i>ex Situ</i> and <i>in Situ</i> Grown PbS Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 25853-25862.	3.1	29
8	Transparent Quasi-Interdigitated Electrodes for Semitransparent Perovskite Back-Contact Solar Cells. ACS Applied Energy Materials, 2018, 1, 4473-4478.	5.1	27
9	Photon-Induced, Timescale, and Electrode Effects Critical for the in Situ X-ray Spectroscopic Analysis of Electrocatalysts: The Water Oxidation Case. Journal of Physical Chemistry C, 2019, 123, 28533-28549.	3.1	24
10	Fabrication of Back-Contact Electrodes Using Modified Natural Lithography. ACS Applied Energy Materials, 2018, 1, 1077-1082.	5.1	23
11	Passivation of PbS Quantum Dot Surface with <scp>l</scp> -Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 4600-4607.	8.0	22
12	Physical properties of carbon nanowalls synthesized by the ICP-PECVD method vs. the growth time. Scientific Reports, 2021, 11, 19287.	3.3	20
13	Cellulose Nanocrystal-Templated Tin Dioxide Thin Films for Gas Sensing. ACS Applied Materials & Interfaces, 2020, 12, 12639-12647.	8.0	19
14	Insights on Desired Fabrication Factors from Modeling Sandwich and Quasi-Interdigitated Back-Contact Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1093-1107.	5.1	19
15	Perovskite solar cells with a hybrid electrode structure. AIP Advances, 2019, 9, 125037.	1.3	16
16	Performance optimization of back-contact perovskite solar cells with quasi-interdigitated electrodes. Solar Energy, 2020, 205, 102-108.	6.1	15
17	Performance evaluation of different designs of back-contact perovskite solar cells. Solar Energy Materials and Solar Cells, 2022, 234, 111426.	6.2	11
18	A Morphological Study of Solvothermally Grown SnO2 Nanostructures for Application in Perovskite Solar Cells, Nanomaterials, 2022, 12, 1686.	4.1	8

#	Article	IF	CITATIONS
19	Chemical passivation of the perovskite layer and its real-time effect on the device performance in back-contact perovskite solar cells. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	6
20	Fabrication of Flexible Quasi-Interdigitated Back-Contact Perovskite Solar Cells. Energies, 2022, 15, 3056.	3.1	6
21	Self-Powered Organometal Halide Perovskite Photodetector with Embedded Silver Nanowires. Nanomaterials, 2022, 12, 1034.	4.1	5
22	Light management in perovskite solar cell by incorporation of carbon quantum dots. Materials Today: Proceedings, 2022, 49, 2487-2490.	1.8	3
23	Fabrication of anode and cathode layers for back-contact solar cells by microsphere lithography. Materials Today: Proceedings, 2021, , .	1.8	0
24	Silver nanowires network-based electrode for metal–semiconductor-metal perovskite solar devices. Materials Today: Proceedings, 2020, , .	1.8	0