
Graham M Gibson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7205771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulated assessment of light transport through ischaemic skin flaps. British Journal of Oral and Maxillofacial Surgery, 2022, 60, 969-973.	0.8	2
2	Real-time visualisation and optimisation of acoustic waves carrying orbital angular momentum. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 264007.	2.1	1
3	Microrheology With an Anisotropic Optical Trap. Frontiers in Physics, 2021, 9, .	2.1	8
4	Single-pixel imaging pattern sets and their implications on scene reconstruction. , 2021, , .		0
5	i-RheoFT: Fourier transforming sampled functions without artefacts. Scientific Reports, 2021, 11, 24047.	3.3	8
6	What Caging Force Cells Feel in 3D Hydrogels: A Rheological Perspective. Advanced Healthcare Materials, 2020, 9, e2000517.	7.6	23
7	Amplification of waves from a rotating body. Nature Physics, 2020, 16, 1069-1073.	16.7	45
8	Revealing and concealing entanglement with noninertial motion. Physical Review A, 2020, 101, .	2.5	15
9	Developing a portable gas imaging camera using highly tunable active-illumination and computer vision. Optics Express, 2020, 28, 18566.	3.4	9
10	Dual-band single-pixel telescope. Optics Express, 2020, 28, 18180.	3.4	14
11	Single-pixel imaging 12 years on: a review. Optics Express, 2020, 28, 28190.	3.4	263
12	Photon Bunching in a Rotating Reference Frame. Physical Review Letters, 2019, 123, 110401.	7.8	30
13	A compact acoustic spanner to rotate macroscopic objects. Scientific Reports, 2019, 9, 6757.	3.3	4
14	Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation. Nature Communications, 2019, 10, 1215.	12.8	91
15	Principles and prospects for single-pixel imaging. Nature Photonics, 2019, 13, 13-20.	31.4	491
16	Reversal of orbital angular momentum arising from an extreme Doppler shift. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3800-3803.	7.1	35
17	Holographic optical trapping Raman micro-spectroscopy for non-invasive measurement and manipulation of live cells. Optics Express, 2018, 26, 25211.	3.4	27
18	Approach to classify, separate, and enrich objects in groups using ensemble sorting. Proceedings of the United States of America, 2018, 115, 5681-5685.	7.1	8

#	Article	IF	CITATIONS
19	Experimental demonstration of ray-rotation sheets. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 1160.	1.5	1
20	Where fewer pixels give you more image. , 2018, , .		0
21	Hydrodynamic micro-manipulation using optically actuated flow control. , 2018, , .		0
22	Adaptive foveated single-pixel imaging with dynamic supersampling. Science Advances, 2017, 3, e1601782.	10.3	184
23	Sub-shot-noise shadow sensing with quantum correlations. Optics Express, 2017, 25, 21826.	3.4	14
24	Real-time imaging of methane gas leaks using a single-pixel camera. Optics Express, 2017, 25, 2998.	3.4	168
25	Comparing the information capacity of Laguerre–Gaussian and Hermite–Gaussian modal sets in a finite-aperture system. Optics Express, 2016, 24, 27127.	3.4	39
26	3D single-pixel video. Journal of Optics (United Kingdom), 2016, 18, 035203.	2.2	57
27	Improving the signal-to-noise ratio of single-pixel imaging using digital microscanning. Optics Express, 2016, 24, 10476.	3.4	132
28	The transition from a coherent optical vortex to a Rankine vortex: beam contrast dependence on topological charge. Journal of Modern Optics, 2016, 63, S51-S56.	1.3	1
29	Tissue diagnosis using power-sharing multifocal Raman micro-spectroscopy and auto-fluorescence imaging. Biomedical Optics Express, 2016, 7, 2993.	2.9	42
30	DMD-based software-configurable spatially-offset Raman spectroscopy for spectral depth-profiling of optically turbid samples. Optics Express, 2016, 24, 12701.	3.4	30
31	Real-time 3D video utilizing a compressed sensing time-of-flight single-pixel camera. , 2016, , .		8
32	Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Science Advances, 2016, 2, e1600190.	10.3	336
33	Single-pixel three-dimensional imaging with time-based depth resolution. Nature Communications, 2016, 7, 12010.	12.8	382
34	Fast Compressive 3D Single-pixel Imaging. , 2016, , .		1
35	First-Photon 3D Imaging with a Single-Pixel Camera. , 2016, , .		1
36	Ghost Imaging. Optics and Photonics News, 2016, 27, 38.	0.5	17

#	Article	IF	CITATIONS
37	Simultaneous real-time visible and infrared video with single-pixel detectors. Scientific Reports, 2015, 5, 10669.	3.3	224
38	Precision Assembly of Complex Cellular Microenvironments using Holographic Optical Tweezers. Scientific Reports, 2015, 5, 8577.	3.3	88
39	A fast 3D reconstruction system with a low-cost camera accessory. Scientific Reports, 2015, 5, 10909.	3.3	28
40	Development of a 3D printer using scanning projection stereolithography. Scientific Reports, 2015, 5, 9875.	3.3	145
41	Slow light in ruby: delaying energy beyond the input pulse. , 2015, , .		2
42	Optically Trapped Bacteria Pairs Reveal Discrete Motile Response to Control Aggregation upon Cell–Cell Approach. Current Microbiology, 2014, 69, 669-674.	2.2	15
43	Experimental investigation of the transient dynamics of slow light in ruby. New Journal of Physics, 2014, 16, 123054.	2.9	14
44	Reply to Comment on â€~Evidence of slow-light effects from rotary drag of structured beams'. New Journal of Physics, 2014, 16, 038002.	2.9	2
45	Single-pixel infrared and visible microscope. Optica, 2014, 1, 285.	9.3	300
46	Mechanical Faraday effect for orbital angular momentum-carrying beams. Optics Express, 2014, 22, 11690.	3.4	16
47	Quad stereo-microscopy. , 2014, , .		Ο
48	"Red Tweezers― Fast, customisable hologram generation for optical tweezers. Computer Physics Communications, 2014, 185, 268-273.	7.5	88
49	Measuring nanoparticle flow with the image structure function. Lab on A Chip, 2013, 13, 2359.	6.0	11
50	Evidence of slow-light effects from rotary drag of structured beams. New Journal of Physics, 2013, 15, 083020.	2.9	12
51	Spatial light modulation for improved microscope stereo vision and 3D tracking. , 2013, , .		0
52	High-Speed AFM with a Light Touch. Biophysical Journal, 2013, 104, 386a.	0.5	0
53	Optical Trapping at Gigapascal Pressures. Physical Review Letters, 2013, 110, 095902.	7.8	21
54	Optical tweezing at extremes. Proceedings of SPIE, 2013, , .	0.8	0

#	Article	IF	CITATIONS
55	Implementing optical tweezers at high pressure in a diamond anvil cell. Proceedings of SPIE, 2013, , .	0.8	0
56	Position clamping in a holographic counterpropagating optical trap. Optics Express, 2011, 19, 9908.	3.4	38
57	Holographic aberration correction: optimising the stiffness of an optical trap deep in the sample. Optics Express, 2011, 19, 24589.	3.4	21
58	Rotary Photon Drag Enhanced by a Slow-Light Medium. Science, 2011, 333, 65-67.	12.6	100
59	Holographic control and high-speed imaging for studies of hydrodynamic coupling on a micron scale. , 2011, , .		0
60	Optical tweezers: wideband microrheology. Journal of Optics (United Kingdom), 2011, 13, 044022.	2.2	65
61	Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers. Journal of Optics (United Kingdom), 2011, 13, 044003.	2.2	39
62	Real time characterization of hydrodynamics in optically trapped networks of microâ€particles. Journal of Biophotonics, 2010, 3, 244-251.	2.3	13
63	Particle tracking stereomicroscopy in optical tweezers: Control of trap shape. Optics Express, 2010, 18, 11785.	3.4	95
64	Measuring storage and loss moduli using optical tweezers: Broadband microrheology. Physical Review E, 2010, 81, 026308.	2.1	75
65	Touching the microworld with force-feedback optical tweezers. Optics Express, 2009, 17, 10259.	3.4	72
66	Increasing trap stiffness with position clamping in holographic optical tweezers. Optics Express, 2009, 17, 22718.	3.4	79
67	Manipulation of live mouse embryonic stem cells using holographic optical tweezers. Journal of Modern Optics, 2009, 56, 448-452.	1.3	18
68	Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. Optics Express, 2008, 16, 14561.	3.4	199
69	A spatial light phase modulator with an effective resolution of 4 mega-pixels. Journal of Modern Optics, 2008, 55, 2945-2951.	1.3	5
70	Holographic assembly workstation for optical manipulation. Journal of Optics, 2008, 10, 044009.	1.5	46
71	Optically controlled, holographic micro-hand. , 2007, , .		0
72	Aberration correction in holographic optical tweezers. Optics Express, 2006, 14, 4169.	3.4	85

#	Article	IF	CITATIONS
73	Aberration correction in holographic optical tweezers. Optics Express, 2006, 14, 4170.	3.4	54
74	An optical trapped microhand for manipulating micron-sized objects. Optics Express, 2006, 14, 12497.	3.4	75
75	Interactive approach to optical tweezers control. Applied Optics, 2006, 45, 897.	2.1	137
76	Imaging of methane gas using a scanning, open-path laser system. New Journal of Physics, 2006, 8, 26-26.	2.9	19
77	An open-path, hand-held laser system for the detection of methane gas. Journal of Optics, 2005, 7, S420-S424.	1.5	38
78	Oil and gas prospecting by ultra-sensitive optical gas detection with inverse gas dispersion modelling. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	19
79	Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 2004, 12, 5448.	3.4	2,218
80	A field-portable, laser-diode spectrometer for the ultra-sensitive detection of hydrocarbon gases. Journal of Modern Optics, 2002, 49, 769-776.	1.3	15