
WiesÅ,aw Olek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7205588/publications.pdf Version: 2024-02-01

WIESA NW OLEK

#	Article	IF	CITATIONS
1	Sorption isotherms of thermally modified wood. Holzforschung, 2013, 67, 183-191.	1.9	76
2	Inverse analysis of the transient bound water diffusion in wood. Holzforschung, 2005, 59, 38-45.	1.9	59
3	Changes in strength of Scots pine wood (Pinus silvestris L.) decayed by brown rot (Coniophora) Tj ETQq1 1 0.7	843 <u>1</u> 4 rgB 7.2	T /Overlock 1 42
4	Effects of the method of identification of the diffusion coefficient on accuracy of modeling bound water transfer in wood. Transport in Porous Media, 2007, 66, 135-144.	2.6	29
5	Thermal properties of wood-based panels: specific heat determination. Wood Science and Technology, 2016, 50, 537-545.	3.2	26
6	Effects of Cyclic Changes in Relative Humidity on the Sorption Hysteresis of Thermally Modified Spruce Wood. BioResources, 2016, 11, .	1.0	25
7	Thermal properties of fractions of corn stover. Construction and Building Materials, 2019, 210, 709-712.	7.2	25
8	Effects of heat treatment on thermal properties of European beech wood. European Journal of Wood and Wood Products, 2020, 78, 425-431.	2.9	24
9	Dimensional stability and hygroscopic properties of waterlogged archaeological wood treated with alkoxysilanes. International Biodeterioration and Biodegradation, 2018, 133, 34-41.	3.9	23
10	Effects of Thermal Conductivity Data on Accuracy of Modeling Heat Transfer in Wood. Holzforschung, 2003, 57, 317-325.	1.9	22
11	Effects of thermal modification on wood ultrastructure analyzed with crystallographic texture. Holzforschung, 2014, 68, 721-726.	1.9	22
12	Implementation of a relaxation equilibrium term in the convective boundary condition for a better representation of the transient bound water diffusion in wood. Wood Science and Technology, 2011, 45, 677-691.	3.2	21
13	Non-Fickian moisture diffusion in thermally modified beech wood analyzed by the inverse method. International Journal of Thermal Sciences, 2016, 109, 291-298.	4.9	21
14	Application of the crystalline volume fraction for characterizing the ultrastructural organization of wood. Cellulose, 2011, 18, 223-235.	4.9	18
15	Thermal properties of wood-based panels: thermal conductivity identification with inverse modeling. European Journal of Wood and Wood Products, 2016, 74, 577-584.	2.9	18
16	Dimensional stability and hygroscopic properties of PEG treated irregularly degraded waterlogged Scots pine wood. Journal of Cultural Heritage, 2018, 31, 133-140.	3.3	17
17	IDENTIFICATION OF MATHEMATICAL MODEL COEFFICIENTS IN THE ANALYSIS OF THE HEAT AND MASS TRANSPORT IN WOOD. Drying Technology, 2000, 18, 1697-1708.	3.1	16
18	Sorption isotherms of waterlogged subfossil Scots pine wood impregnated with a lactitol and trehalose mixture. Holzforschung, 2017, 71, 813-819.	1.9	15

WiesÅ,aw Olek

#	Article	IF	CITATIONS
19	Inverse Finite Element Analysis of Technological Processes of Heat and Mass Transport in Agricultural and Forest Products. Drying Technology, 2005, 23, 1737-1750.	3.1	13
20	Hygroscopic properties of PEG treated archaeological wood from the rampart of the 10th century stronghold as exposed in the Archaeological Reserve Genius loci in PoznaÅ,, (Poland). Journal of Cultural Heritage, 2016, 18, 299-305.	3.3	13
21	Texture function application for wood ultrastructure description. Part 2: Application. Wood Science and Technology, 2006, 40, 336-349.	3.2	11
22	Effects of cell wall ultrastructure on the transverse shrinkage anisotropy of Scots pine wood. Holzforschung, 2015, 69, 501-507.	1.9	11
23	INFLUENCE OF CYCLIC SORPTION ON WOOD ULTRASTRUCTURE. BioResources, 2012, 7, .	1.0	8
24	Estimation of Thermal Properties of Straw-Based Insulating Panels. Materials, 2022, 15, 1073.	2.9	8
25	Texture function application for wood ultrastructure description. Part 1: theory. Wood Science and Technology, 2006, 40, 159-171.	3.2	7
26	Sorption and diffusion properties of untreated and thermally modified beech wood dust. Wood Science and Technology, 2022, 56, 7-23.	3.2	6
27	Water sorption and diffusion properties of beech wood dust. Powder Technology, 2019, 346, 109-115.	4.2	5
28	Prediction of temperature changes in glued laminated beams. European Journal of Wood and Wood Products, 1995, 53, 249-252.	2.9	4
29	Effects of White and Brown Rot Decay on Changes of Wood Ultrastructure. BioResources, 2014, 9, .	1.0	4
30	Large moisture evaporation rates from sapwood and heartwood samples of Douglas fir (Pseudotsuga) Tj ETQq0	0 0 rgBT /0 2 .9 BT /0	Dverlock 10 T
31	Integration of experimental and computational methods for identifying geometric, thermal and diffusive properties of biomaterials. International Agrophysics, 2016, 30, 253-260.	1.7	2
32	Preferred crystallographic orientation in mature and juvenile wood. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, 199-203.	0.8	1
33	Application of the Response Surface Methodology for Designing Oscillation Drying of Beech Timber.	2.1	1

34	Computer-aided identification of the water diffusion coefficient for maize kernels dried in a thin layer. International Agrophysics, 2016, 30, 323-329.		1.7	0
----	---	--	-----	---