List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7205507/publications.pdf Version: 2024-02-01

		44042	74108
221	8,277	48	75
papers	citations	h-index	g-index
222	222	222	0005
233	233	233	9235
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science, 2018, 359, 466-469.	6.0	783
2	Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sensing of Environment, 2012, 123, 368-380.	4.6	249
3	Partial migration in roe deer: migratory and resident tactics are end points of a behavioural gradient determined by ecological factors. Oikos, 2011, 120, 1790-1802.	1.2	186
4	Biodiversity along temperate forest succession. Journal of Applied Ecology, 2018, 55, 2756-2766.	1.9	175
5	Small beetle, largeâ€scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. Journal of Applied Ecology, 2016, 53, 530-540.	1.9	161
6	Understanding Forest Health with Remote Sensing -Part l—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sensing, 2016, 8, 1029.	1.8	138
7	Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within <scp>E</scp> urope. Journal of Animal Ecology, 2013, 82, 1326-1339.	1.3	133
8	Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecological Indicators, 2016, 70, 317-339.	2.6	129
9	Understanding Forest Health with Remote Sensing-Part II—A Review of Approaches and Data Models. Remote Sensing, 2017, 9, 129.	1.8	110
10	Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. Forest Ecology and Management, 2013, 308, 76-89.	1.4	107
11	Factors affecting the spatio-temporal dispersion of Ips typographus (L.) in Bavarian Forest National Park: A long-term quantitative landscape-level analysis. Forest Ecology and Management, 2011, 261, 233-245.	1.4	106
12	Priority list of biodiversity metrics to observe from space. Nature Ecology and Evolution, 2021, 5, 896-906.	3.4	101
13	Important LiDAR metrics for discriminating forest tree species in Central Europe. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 137, 163-174.	4.9	97
14	Sentinelâ€2 accurately maps greenâ€attack stage of European spruce bark beetle (<i>Ips typographus</i> , L.) compared with Landsatâ€8. Remote Sensing in Ecology and Conservation, 2019, 5, 87-106.	2.2	95
15	Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park. Forest Ecology and Management, 2008, 255, 2416-2433.	1.4	93
16	Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park. Forest Ecology and Management, 2014, 328, 179-192.	1.4	90
17	How many routes lead to migration? Comparison of methods to assess and characterize migratory movements. Journal of Animal Ecology, 2016, 85, 54-68.	1.3	89
18	Challenges and science-based implications for modern management and conservation of European ungulate populations. Mammal Research, 2017, 62, 209-217.	0.6	87

#	Article	IF	CITATIONS
19	Spatio-temporal infestation patterns of Ips typographus (L.) in the Bavarian Forest National Park, Germany. Ecological Indicators, 2013, 31, 73-81.	2.6	83
20	Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest. International Journal of Applied Earth Observation and Geoinformation, 2016, 45, 66-76.	1.4	83
21	Simulation and analysis of outbreaks of bark beetle infestations and their management at the stand level. Ecological Modelling, 2011, 222, 1833-1846.	1.2	78
22	An event-based conceptual model for context-aware movement analysis. International Journal of Geographical Information Science, 2011, 25, 1347-1370.	2.2	77
23	Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nature Ecology and Evolution, 2020, 4, 1204-1212.	3.4	76
24	An experimental test of the habitatâ€amount hypothesis for saproxylic beetles in a forested region. Ecology, 2017, 98, 1613-1622.	1.5	75
25	In Situ/Remote Sensing Integration to Assess Forest Health—A Review. Remote Sensing, 2016, 8, 471.	1.8	74
26	Leaf Nitrogen Content Indirectly Estimated by Leaf Traits Derived From the PROSPECT Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 3172-3182.	2.3	73
27	European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties. International Journal of Applied Earth Observation and Geoinformation, 2018, 64, 199-209.	1.4	71
28	Improving leaf area index (LAI) estimation by correcting for clumping and woody effects using terrestrial laser scanning. Agricultural and Forest Meteorology, 2018, 263, 276-286.	1.9	70
29	Detection of fallen trees in ALS point clouds using a Normalized Cut approach trained by simulation. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105, 252-271.	4.9	68
30	Radar vision in the mapping of forest biodiversity from space. Nature Communications, 2019, 10, 4757.	5.8	66
31	Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural European beech (Fagus sylvatica) and Norway spruce (Picea abies) forests. Forestry, 2008, 81, 645-661.	1.2	64
32	Vegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest. Remote Sensing, 2016, 8, 491.	1.8	63
33	Tree species classification using plant functional traits from LiDAR and hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 2018, 73, 207-219.	1.4	63
34	Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches. Remote Sensing, 2018, 10, 1120.	1.8	63
35	Forest inventories by LiDAR data: A comparison of single tree segmentation and metric-based methods for inventories of a heterogeneous temperate forest. International Journal of Applied Earth Observation and Geoinformation, 2015, 42, 162-174.	1.4	62
36	Using airborne laser scanning to model potential abundance and assemblages of forest passerines. Basic and Applied Ecology, 2009, 10, 671-681.	1.2	61

#	Article	IF	CITATIONS
37	Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biological Conservation, 2018, 224, 355-365.	1.9	61
38	Mapping out a future for ungulate migrations. Science, 2021, 372, 566-569.	6.0	61
39	Habitat selection by a large herbivore at multiple spatial and temporal scales is primarily governed by food resources. Ecography, 2017, 40, 1014-1027.	2.1	60
40	Activity Patterns of Eurasian Lynx Are Modulated by Light Regime and Individual Traits over a Wide Latitudinal Range. PLoS ONE, 2014, 9, e114143.	1.1	58
41	Response of mountain <i>Picea abies</i> forests to standâ€replacing bark beetle outbreaks: neighbourhood effects lead to selfâ€replacement. Journal of Applied Ecology, 2015, 52, 1402-1411.	1.9	57
42	Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model. International Journal of Applied Earth Observation and Geoinformation, 2019, 79, 58-70.	1.4	57
43	Object-orientated image analysis for the semi-automatic detection of dead trees following a spruce bark beetle (Ips typographus) outbreak. European Journal of Forest Research, 2010, 129, 313-324.	1.1	55
44	Habitat selection by Eurasian lynx (<i>Lynx lynx</i>) is primarily driven by avoidance of human activity during day and prey availability during night. Ecology and Evolution, 2017, 7, 6367-6381.	0.8	54
45	LiDAR Remote Sensing of Forest Structure and GPS Telemetry Data Provide Insights on Winter Habitat Selection of European Roe Deer. Forests, 2014, 5, 1374-1390.	0.9	53
46	Comparison of Landsat-8 and Sentinel-2 Data for Estimation of Leaf Area Index in Temperate Forests. Remote Sensing, 2019, 11, 1160.	1.8	53
47	Estimating over- and understorey canopy density of temperate mixed stands by airborne LiDAR data. Forestry, 2016, 89, 69-81.	1.2	52
48	Large off-nadir scan angle of airborne LiDAR can severely affect the estimates of forest structure metrics. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 136, 13-25.	4.9	52
49	Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park. Remote Sensing of Environment, 2018, 209, 700-711.	4.6	52
50	Right on track? Performance of satellite telemetry in terrestrial wildlife research. PLoS ONE, 2019, 14, e0216223.	1.1	52
51	Wave-like Patterns of Plant Phenology Determine Ungulate Movement Tactics. Current Biology, 2020, 30, 3444-3449.e4.	1.8	52
52	Do bark beetle outbreaks amplify or dampen future bark beetle disturbances in Central Europe?. Journal of Ecology, 2021, 109, 737-749.	1.9	52
53	New Possibilities of Observing Animal Behaviour from a Distance Using Activity Sensors in Gpsâ€Collars: An Attempt to Calibrate Remotely Collected Activity Data with Direct Behavioural Observations in Red Deer <i>Cervus elaphus</i> . Wildlife Biology, 2009, 15, 425-434.	0.6	50
54	A Bayesian hierarchical model for estimating spatial and temporal variation in vegetation phenology from Landsat time series. Remote Sensing of Environment, 2017, 194, 155-160.	4.6	50

#	Article	IF	CITATIONS
55	Variation of leaf angle distribution quantified by terrestrial LiDAR in natural European beech forest. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148, 208-220.	4.9	49
56	Keep the wolf from the door: How to conserve wolves in Europe's human-dominated landscapes?. Biological Conservation, 2019, 235, 102-111.	1.9	49
57	Reintroducing rewilding to restoration – Rejecting the search for novelty. Biological Conservation, 2019, 233, 255-259.	1.9	49
58	Creating a landscape of management: Unintended effects on the variation of browsing pressure in a national park. Forest Ecology and Management, 2015, 338, 46-56.	1.4	47
59	Migration in geographic and ecological space by a large herbivore. Ecological Monographs, 2017, 87, 297-320.	2.4	46
60	Green wave tracking by large herbivores: an experimental approach. Ecology, 2016, 97, 3547-3553.	1.5	45
61	Functionally richer communities improve ecosystem functioning: Dung removal and secondary seed dispersal by dung beetles in the Western Palaearctic. Journal of Biogeography, 2019, 46, 70-82.	1.4	45
62	Fear of the dark? Contrasting impacts of humans versus lynx on diel activity of roe deer across Europe. Journal of Animal Ecology, 2020, 89, 132-145.	1.3	45
63	Large herbivore migration plasticity along environmental gradients in Europe: lifeâ€history traits modulate forage effects. Oikos, 2019, 128, 416-429.	1.2	44
64	Impacts and underlying factors of landscape-scale, historical disturbance of mountain forest identified using archival documents. Forest Ecology and Management, 2013, 305, 294-306.	1.4	42
65	Comparing methods for mapping canopy chlorophyll content in a mixed mountain forest using Sentinel-2 data. International Journal of Applied Earth Observation and Geoinformation, 2020, 87, 102037.	1.4	42
66	Long-term measurement of roe deer (Capreolus capreolus) (Mammalia: Cervidae) activity using two-axis accelerometers in GPS-collars. Italian Journal of Zoology, 2013, 80, 69-81.	0.6	41
67	Using Intra-Annual Landsat Time Series for Attributing Forest Disturbance Agents in Central Europe. Forests, 2017, 8, 251.	0.9	41
68	Habitat metrics based on multiâ€ŧemporal Landsat imagery for mapping large mammal habitat. Remote Sensing in Ecology and Conservation, 2020, 6, 52-69.	2.2	41
69	Country, Cover or Protection: What Shapes the Distribution of Red Deer and Roe Deer in the Bohemian Forest Ecosystem?. PLoS ONE, 2015, 10, e0120960.	1.1	40
70	Network structure of vertebrate scavenger assemblages at the global scale: drivers and ecosystem functioning implications. Ecography, 2020, 43, 1143-1155.	2.1	40
71	Seasonal and daily activity patterns of freeâ€living Eurasian lynx <i>Lynx lynx</i> in relation to availability of kills. Wildlife Biology, 2013, 19, 69-77.	0.6	39
72	Stay home, stay safe—Site familiarity reduces predation risk in a large herbivore in two contrasting study sites. Journal of Animal Ecology, 2020, 89, 1329-1339.	1.3	37

#	Article	IF	CITATIONS
73	Survival and causes of death of European Roe Deer before and after Eurasian Lynx reintroduction in the Bavarian Forest National Park. European Journal of Wildlife Research, 2012, 58, 567-578.	0.7	35
74	Protected areas shape the spatial distribution of a European lynx population more than 20 years after reintroduction. Biological Conservation, 2014, 177, 210-217.	1.9	35
75	Canopy foliar nitrogen retrieved from airborne hyperspectral imagery by correcting for canopy structure effects. International Journal of Applied Earth Observation and Geoinformation, 2017, 54, 84-94.	1.4	35
76	Feeding patterns of red deer Cervus elaphus along an altitudinal gradient in the Bohemian Forest: effect of habitat and season. Wildlife Biology, 2010, 16, 173-184.	0.6	33
77	Sensitivity of Landsat-8 OLI and TIRS Data to Foliar Properties of Early Stage Bark Beetle (Ips) Tj ETQq1 1 0.784	314.rgBT /	Overlock 10
78	A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data. Remote Sensing of Environment, 2020, 240, 111691.	4.6	33
79	Large-Scale Mapping of Tree Species and Dead Trees in Åumava National Park and Bavarian Forest National Park Using Lidar and Multispectral Imagery. Remote Sensing, 2020, 12, 661.	1.8	33
80	Ungulate management in European national parks: Why a more integrated European policy is needed. Journal of Environmental Management, 2020, 260, 110068.	3.8	33
81	Distribution and status of lynx in the border region between Czech Republic, Germany and Austria. Acta Theriologica, 2001, 46, 181-194.	1.1	33
82	Sensitivity Analysis of 3D Individual Tree Detection from LiDAR Point Clouds of Temperate Forests. Forests, 2014, 5, 1122-1142.	0.9	32
83	A one night stand? Reproductive excursions of female roe deer as a breeding dispersal tactic. Oecologia, 2014, 176, 431-443.	0.9	32
84	Spatially detailed retrievals of spring phenology from single-season high-resolution image time series. International Journal of Applied Earth Observation and Geoinformation, 2017, 59, 19-30.	1.4	32
85	Plastic response by a small cervid to supplemental feeding in winter across a wide environmental gradient. Ecosphere, 2017, 8, e01629.	1.0	31
86	LiDARâ€derived canopy structure supports the moreâ€individuals hypothesis for arthropod diversity in temperate forests. Oikos, 2018, 127, 814-824.	1.2	31
87	Accurate modelling of canopy traits from seasonal Sentinel-2 imagery based on the vertical distribution of leaf traits. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 157, 108-123.	4.9	31
88	Distribution and status of lynx in the border region between Czech Republic, Germany and Austria. Acta Theriologica, 2001, 46, 181-194.	1.1	30
89	<i>Listeria monocytogenes</i> in Different Specimens from Healthy Red Deer and Wild Boars. Foodborne Pathogens and Disease, 2016, 13, 391-397	0.8	30
90	Influence of selected habitat and stand factors on bark beetle Ips typographus (L.) outbreak in the BiaÅ,owieża Forest. Forest Ecology and Management, 2020, 459, 117826.	1.4	30

#	Article	IF	CITATIONS
91	Landscape configuration is a major determinant of home range size variation. Ecosphere, 2015, 6, 1-12.	1.0	29
92	Combining graph-cut clustering with object-based stem detection for tree segmentation in highly dense airborne lidar point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172, 207-222.	4.9	29
93	The effect of reintroductions on the genetic variability in Eurasian lynx populations: the cases of Bohemian–Bavarian and Vosges–Palatinian populations. Conservation Genetics, 2016, 17, 1229-1234.	0.8	28
94	Forest structure following natural disturbances and early succession provides habitat for two avian flagship species, capercaillie (Tetrao urogallus) and hazel grouse (Tetrastes bonasia). Biological Conservation, 2018, 226, 81-91.	1.9	28
95	Integrating LiDAR and high-resolution imagery for object-based mapping of forest habitats in a heterogeneous temperate forest landscape. International Journal of Remote Sensing, 2018, 39, 8859-8884.	1.3	28
96	Landscape predictors of human–leopard conflicts within multi-use areas of the Himalayan region. Scientific Reports, 2020, 10, 11129.	1.6	28
97	Annual changes in roe deer (Capreolus capreolus L.) diet in the Bohemian Forest, Czech Republic/Germany. European Journal of Wildlife Research, 2010, 56, 327-333.	0.7	27
98	Mapping a â€~cryptic kingdom': Performance of lidar derived environmental variables in modelling the occurrence of forest fungi. Remote Sensing of Environment, 2016, 186, 428-438.	4.6	27
99	Doubting dung: eDNA reveals high rates of misidentification in diverse European ungulate communities. European Journal of Wildlife Research, 2019, 65, 1.	0.7	27
100	Machine learning methods' performance in radiative transfer model inversion to retrieve plant traits from Sentinel-2 data of a mixed mountain forest. International Journal of Digital Earth, 2021, 14, 106-120.	1.6	27
101	Habitat availability is not limiting the distribution of the Bohemian–Bavarian lynx <i>Lynx lynx</i> population. Oryx, 2016, 50, 742-752.	0.5	26
102	Estimation of regeneration coverage in a temperate forest by 3D segmentation using airborne laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 252-262.	1.4	26
103	Beauty and the beast: how a bat utilizes forests shaped by outbreaks of an insect pest. Animal Conservation, 2018, 21, 21-30.	1.5	26
104	National Parks as Model Regions for Interdisciplinary Long-Term Ecological Research: The Bavarian Forest and Åumavá National Parks Underway to Transboundary Ecosystem Research. , 2010, , 327-344.		26
105	Activity patterns of European roe deer (<i>Capreolus capreolus</i>) are strongly influenced by individual behaviour. Folia Zoologica, 2013, 62, 67-75.	0.9	25
106	Synthetic RapidEye data used for the detection of area-based spruce tree mortality induced by bark beetles. GIScience and Remote Sensing, 2018, 55, 839-859.	2.4	25
107	Remotely Sensed Single Tree Data Enable the Determination of Habitat Thresholds for the Three-Toed Woodpecker (Picoides tridactylus). Remote Sensing, 2018, 10, 1972.	1.8	25
108	Application of optical unmanned aerial vehicle-based imagery for the inventory of natural regeneration and standing deadwood in post-disturbed spruce forests. International Journal of Remote Sensing, 2018, 39, 5288-5309.	1.3	24

#	Article	IF	CITATIONS
109	Truly sedentary? The multi-range tactic as a response to resource heterogeneity and unpredictability in a large herbivore. Oecologia, 2018, 187, 47-60.	0.9	24
110	LiDAR derived topography and forest stand characteristics largely explain the spatial variability observed in MODIS land surface phenology. Remote Sensing of Environment, 2018, 218, 231-244.	4.6	24
111	An efficient method to exploit Li <scp>DAR</scp> data in animal ecology. Methods in Ecology and Evolution, 2018, 9, 893-904.	2.2	23
112	Adaptive stopping criterion for top-down segmentation of ALS point clouds in temperate coniferous forests. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 141, 265-274.	4.9	23
113	Vegetation and disturbance history of the Bavarian Forest National Park, Germany. Vegetation History and Archaeobotany, 2020, 29, 277-295.	1.0	23
114	Crossing the border? Structure of the red deer (Cervus elaphus) population from the Bavarian–Bohemian forest ecosystem. Mammalian Biology, 2012, 77, 211-220.	0.8	22
115	A voting-based statistical cylinder detection framework applied to fallen tree mapping in terrestrial laser scanning point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129, 118-130.	4.9	22
116	Timing of red-edge and shortwave infrared reflectance critical for early stress detection induced by bark beetle (Ips typographus, L.) attack. International Journal of Applied Earth Observation and Geoinformation, 2019, 82, 101900.	1.4	22
117	Enhanced detection of 3D individual trees in forested areas using airborne full-waveform LiDAR data by combining normalized cuts with spatial density clustering. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, II-5/W2, 349-354.	0.0	22
118	Selective Predation of a Stalking Predator on Ungulate Prey. PLoS ONE, 2016, 11, e0158449.	1.1	21
119	Introducing â€~presence' and â€~stationarity index' to study partial migration patterns: an application of a spatio-temporal clustering technique. International Journal of Geographical Information Science, 2016, 30, 907-928.	2.2	21
120	Functional traits driving species role in the structure of terrestrial vertebrate scavenger networks. Ecology, 2021, 102, e03519.	1.5	21
121	Learning a constrained conditional random field for enhanced segmentation of fallen trees in ALS point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 140, 33-44.	4.9	20
122	Linking the Remote Sensing of Geodiversity and Traits Relevant to Biodiversity—Part II: Geomorphology, Terrain and Surfaces. Remote Sensing, 2020, 12, 3690.	1.8	20
123	A voxel matching method for effective leaf area index estimation in temperate deciduous forests from leaf-on and leaf-off airborne LiDAR data. Remote Sensing of Environment, 2020, 240, 111696.	4.6	20
124	Hide and seek: extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas. Biodiversity and Conservation, 2015, 24, 2935-2952.	1.2	19
125	Mapping Canopy Chlorophyll Content in a Temperate Forest Using Airborne Hyperspectral Data. Remote Sensing, 2020, 12, 3573.	1.8	19
126	Patterns of Lynx Predation at the Interface between Protected Areas and Multi-Use Landscapes in Central Europe. PLoS ONE, 2015, 10, e0138139.	1.1	18

#	Article	IF	CITATIONS
127	Evaluating a collaborative decision-analytic approach to inform conservation decision-making in transboundary regions. Land Use Policy, 2019, 83, 282-296.	2.5	18
128	Improving LiDAR-based tree species mapping in Central European mixed forests using multi-temporal digital aerial colour-infrared photographs. International Journal of Applied Earth Observation and Geoinformation, 2020, 84, 101970.	1.4	18
129	Mapping individual trees with airborne laser scanning data in an European lowland forest using a self-calibration algorithm. International Journal of Applied Earth Observation and Geoinformation, 2020, 93, 102191.	1.4	18
130	Survival and cause-specific mortality of European wildcat (Felis silvestris) across Europe. Biological Conservation, 2021, 261, 109239.	1.9	18
131	Human disturbance is the most limiting factor driving habitat selection of a large carnivore throughout Continental Europe. Biological Conservation, 2022, 266, 109446.	1.9	18
132	Carcass provisioning for scavenger conservation in a temperate forest ecosystem. Ecosphere, 2020, 11, e03063.	1.0	17
133	Red deer at a crossroads—An analysis of communication strategies concerning wildlife management in the â€~Bayerischer Wald' National Park, Germany. Journal for Nature Conservation, 2011, 19, 319-326.	0.8	16
134	Mapping leaf area index in a mixed temperate forest using Fenix airborne hyperspectral data and Gaussian processes regression. International Journal of Applied Earth Observation and Geoinformation, 2021, 95, 102242.	1.4	16
135	Olfactory cues of large carnivores modify red deer behavior and browsing intensity. Behavioral Ecology, 2021, 32, 982-992.	1.0	16
136	Humans rather than Eurasian lynx (<i>Lynx lynx</i>) shape ungulate browsing patterns in a temperate forest. Ecosphere, 2022, 13, .	1.0	16
137	Synchrony in hunting bags: Reaction on climatic and human induced changes?. Science of the Total Environment, 2014, 468-469, 140-146.	3.9	15
138	Active learning approach to detecting standing dead trees from ALS point clouds combined with aerial infrared imagery. , 2015, , .		15
139	Combining Active and Semisupervised Learning of Remote Sensing Data Within a Renyi Entropy Regularization Framework. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 2910-2922.	2.3	15
140	European Roe Deer Increase Vigilance When Faced with Immediate Predation Risk by Eurasian Lynx. Ethology, 2017, 123, 30-40.	0.5	15
141	Significant effect of topographic normalization of airborne LiDAR data on the retrieval of plant area index profile in mountainous forests. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132, 77-87.	4.9	15
142	Variability of daily space use in wild boar Sus scrofa. Wildlife Biology, 2020, 2020, .	0.6	15
143	Demography of a Eurasian lynx (Lynx lynx) population within a strictly protected area in Central Europe. Scientific Reports, 2021, 11, 19868.	1.6	15
144	Detection and characterization of Shiga toxin-producing <i>Escherichia coli</i> in faeces and lymphatic tissue of free-ranging deer. Epidemiology and Infection, 2013, 141, 251-259.	1.0	14

#	Article	IF	CITATIONS
145	Spatial patterns of coâ€occurrence of the European wildcat <i>Felis silvestris silvestris</i> and domestic cats <i>Felis silvestris catus</i> in the Bavarian Forest National Park. Wildlife Biology, 2017, 2017, 1-8.	0.6	14
146	The blame game: Using eDNA to identify species-specific tree browsing by red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in a temperate forest. Forest Ecology and Management, 2019, 451, 117483.	1.4	14
147	Multi-Scale Remote Sensing-Assisted Forest Inventory: A Glimpse of the State-of-the-Art and Future Prospects. Remote Sensing, 2019, 11, 1260.	1.8	14
148	Classification of Tree Species as Well as Standing Dead Trees Using Triple Wavelength ALS in a Temperate Forest. Remote Sensing, 2019, 11, 2614.	1.8	14
149	Does Public Participation Shift German National Park Priorities Away from Nature Conservation?. Environmental Conservation, 2019, 46, 84-91.	0.7	14
150	Phylogeny- and Abundance-Based Metrics Allow for the Consistent Comparison of Core Gut Microbiome Diversity Indices Across Host Species. Frontiers in Microbiology, 2021, 12, 659918.	1.5	14
151	Individual-tree- and stand-based development following natural disturbance in a heterogeneously structured forest: A LiDAR-based approach. Ecological Informatics, 2017, 38, 12-25.	2.3	13
152	Detection dogs allow for systematic non-invasive collection of DNA samples from Eurasian lynx. Mammalian Biology, 2018, 90, 42-46.	0.8	13
153	Comparison of terrestrial LiDAR and digital hemispherical photography for estimating leaf angle distribution in European broadleaf beech forests. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158, 76-89.	4.9	13
154	Largeâ€scale variation in birth timing and synchrony of a large herbivore along the latitudinal and altitudinal gradients. Journal of Animal Ecology, 2020, 89, 1906-1917.	1.3	13
155	Instance segmentation of fallen trees in aerial color infrared imagery using active multi-contour evolution with fully convolutional network-based intensity priors. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178, 297-313.	4.9	13
156	Eurasian lynx hunting red deer: is there an influence of a winter enclosure system?. European Journal of Wildlife Research, 2014, 60, 441-457.	0.7	12
157	Evaluating the performance of PROSPECT in the retrieval of leaf traits across canopy throughout the growing season. International Journal of Applied Earth Observation and Geoinformation, 2019, 83, 101919.	1.4	12
158	Individual Movement - Sequence Analysis Method (IM-SAM): characterizing spatio-temporal patterns of animal habitat use across landscapes. International Journal of Geographical Information Science, 2020, 34, 1530-1551.	2.2	12
159	Satelliteâ€based habitat monitoring reveals longâ€ŧerm dynamics of deer habitat in response to forest disturbances. Ecological Applications, 2021, 31, e2269.	1.8	12
160	In the shadows of snow leopards and the Himalayas: density and habitat selection of blue sheep in Manang, Nepal. Ecology and Evolution, 2021, 11, 108-122.	0.8	12
161	Impact of winter enclosures on the gut bacterial microbiota of red deer in the Bavarian Forest National Park. Wildlife Biology, 2019, 2019, .	0.6	12
162	The importance of individual movement and feeding behaviour for long-distance seed dispersal by red deer: a data-driven model. Movement Ecology, 2020, 8, 44.	1.3	11

#	Article	IF	CITATIONS
163	The influence of camera trap flash type on the behavioural reactions and trapping rates of red deer and roe deer. Remote Sensing in Ecology and Conservation, 2020, 6, 399-410.	2.2	11
164	Discourse analysis as an instrument to reveal the pivotal role of the media in local acceptance or rejection of a wildlife management project. A case study from the Bavarian Forest National Park. Erdkunde, 2012, , 143-156.	0.4	11
165	A Biodiversity Boost From the Eurasian Beaver (Castor fiber) in Germany's Oldest National Park. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	11
166	Deer Behavior Affects Density Estimates With Camera Traps, but Is Outweighed by Spatial Variability. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	11
167	Calibration of remotely collected acceleration data with behavioral observations of roe deer (Capreolus capreolus L.). Acta Theriologica, 2012, 57, 251-255.	1.1	10
168	Adding structure to land cover – using fractional cover to study animal habitat use. Movement Ecology, 2014, 2, 26.	1.3	10
169	The declining occurrence of moose (<i>Alces alces</i>) at the southernmost edge of its range raise conservation concerns. Ecology and Evolution, 2021, 11, 5468-5483.	0.8	10
170	Roads constrain movement across behavioural processes in a partially migratory ungulate. Movement Ecology, 2021, 9, 57.	1.3	10
171	Linking annual variations of roe deer bag records to large-scale winter conditions: spatio-temporal development in Europe between 1961 and 2013. European Journal of Wildlife Research, 2017, 63, 1.	0.7	9
172	Shedding of <i>Mycobacterium caprae</i> by wild red deer (<i>Cervus elaphus</i>) in the Bavarian alpine regions, Germany. Transboundary and Emerging Diseases, 2020, 67, 308-317.	1.3	9
173	The critical role of tree species and human disturbance in determining the macrofungal diversity in Europe. Global Ecology and Biogeography, 2021, 30, 2084-2100.	2.7	9
174	Impact of Slope, Aspect, and Habitat-Type on LiDAR-Derived Digital Terrain Models in a Near Natural, Heterogeneous Temperate Forest. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85, 243-255.	0.7	8
175	Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multiâ€scale approach. Diversity and Distributions, 2021, 27, 439-453.	1.9	8
176	The impact of voxel size, forest type, and understory cover on visibility estimation in forests using terrestrial laser scanning. GIScience and Remote Sensing, 2021, 58, 323-339.	2.4	8
177	Sustainable protected areas: Synergies between biodiversity conservation and socioeconomic development. People and Nature, 2022, 4, 893-903.	1.7	8
178	Population control based on abundance estimates: Frequency does not compensate for uncertainty. Ecological Complexity, 2014, 20, 43-50.	1.4	7
179	Natural regeneration determines wintering bird presence in wind-damaged coniferous forest stands independent of postdisturbance logging. Canadian Journal of Forest Research, 2015, 45, 1232-1237.	0.8	7
180	Shiga toxin-producing Escherichia coli (STEC) shedding in a wild roe deer population. Veterinary Microbiology, 2019, 239, 108479.	0.8	7

#	Article	IF	CITATIONS
181	Evaluating Prediction Models for Mapping Canopy Chlorophyll Content Across Biomes. Remote Sensing, 2020, 12, 1788.	1.8	7
182	Forest dieback in a protected area triggers the return of the primeval forest specialist <i>Peltis grossa</i> (Coleoptera, Trogossitidae). Conservation Science and Practice, 2022, 4, e612.	0.9	7
183	How Attitudes are Shaped: Controversies Surrounding Red Deer Management in a National Park. Human Dimensions of Wildlife, 2012, 17, 404-417.	1.0	6
184	Genetic variability and size estimates of the Eurasian otter (Lutra lutra) population in the Bohemian Forest Ecosystem. Mammalian Biology, 2017, 86, 42-47.	0.8	6
185	Dung beetle assemblages, dung removal and secondary seed dispersal: data from a large-scale, multi-site experiment in the Western Palaearctic. Frontiers of Biogeography, 2018, 10, .	0.8	6
186	Laacher See tephra discovered in the Bohemian Forest, Germany, east of the eruption. Quaternary Geochronology, 2019, 51, 130-139.	0.6	6
187	Canopy Height Estimation from Single Multispectral 2D Airborne Imagery Using Texture Analysis and Machine Learning in Structurally Rich Temperate Forests. Remote Sensing, 2019, 11, 2853.	1.8	6
188	Comparative Evaluation of Algorithms for Leaf Area Index Estimation from Digital Hemispherical Photography through Virtual Forests. Remote Sensing, 2021, 13, 3325.	1.8	6
189	A Range of Earth Observation Techniques for Assessing Plant Diversity. , 2020, , 309-348.		6
190	Prospect inversion for indirect estimation of leaf dry matter content and specific leaf area. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W3, 277-284.	0.2	6
191	Evaluating expertâ€based habitat suitability information of terrestrial mammals with <scp>CPSâ€</scp> tracking data. Global Ecology and Biogeography, 2022, 31, 1526-1541.	2.7	6
192	Low genotyping error rates in non-invasively collected samples from roe deer of the Bavarian Forest National Park. Mammalian Biology, 2012, 77, 67-70.	0.8	5
193	What factors affect the survival of tree saplings under browsing, and how can a loss of admixed tree species be forecast?. Ecological Modelling, 2015, 305, 1-9.	1.2	5
194	The boon and bane of boldness: movement syndrome as saviour and sink for population genetic diversity. Movement Ecology, 2020, 8, 16.	1.3	5
195	Sex differences in condition dependence of natal dispersal in a large herbivore: dispersal propensity and distance are decoupled. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202947.	1.2	5
196	Estimating fine-scale visibility in a temperate forest landscape using airborne laser scanning. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102478.	1.4	5
197	Comparison of the effectivity of different snare types for collecting and retaining hair from Eurasian Lynx (Lynx lynx). European Journal of Wildlife Research, 2012, 58, 579-587.	0.7	4
198	Automatic Mapping of Standing Dead Trees after an Insect Outbreak Using the Window Independent Context Segmentation Method. Journal of Forestry, 2014, , .	0.5	4

#	Article	IF	CITATIONS
199	In situ feeding as a new management tool to conserve orphaned Eurasian lynx (lynx lynx). Ecology and Evolution, 2021, 11, 2963-2973.	0.8	4
200	Carcasses at Fixed Locations Host a Higher Diversity of Necrophilous Beetles. Insects, 2021, 12, 412.	1.0	4
201	Mapping individual silver fir trees using hyperspectral and LiDAR data in a Central European mixed forest. International Journal of Applied Earth Observation and Geoinformation, 2021, 98, 102311.	1.4	4
202	A laboratory for conceiving Essential Biodiversity Variables (EBVs)—The â€~Data pool initiative for the Bohemian Forest Ecosystem'. Methods in Ecology and Evolution, 2021, 12, 2073-2083.	2.2	4
203	Holling meets habitat selection: functional response of large herbivores revisited. Movement Ecology, 2021, 9, 45.	1.3	4
204	Rocks rock: the importance of rock formations as resting sites of the Eurasian lynx Lynx lynx. Wildlife Biology, 2019, 2019, .	0.6	4
205	FEATURE RELEVANCE ASSESSMENT OF MULTISPECTRAL AIRBORNE LIDAR DATA FOR TREE SPECIES CLASSIFICATION. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3, 31-34.	0.2	4
206	A Learnable Model With Calibrated Uncertainty Quantification for Estimating Canopy Height From Spaceborne Sequential Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-13.	2.7	4
207	Multi-model estimation of understorey shrub, herb and moss cover in temperate forest stands by laser scanner data. Forestry, 2017, , .	1.2	3
208	Predicting the Risk of Deer-vehicle Collisions by Inferring Rules Learnt from Deer Experience and Movement Patterns in the Vicinity of Roads. , 2020, , .		3
209	Mountain aquatic <i>Isoëtes</i> populations reflect millennial-scale environmental changes in the Bohemian Forest Ecosystem, Central Europe. Holocene, 2021, 31, 746-759.	0.9	3
210	Canopy chlorophyll content retrieved from time series remote sensing data as a proxy for detecting bark beetle infestation. Remote Sensing Applications: Society and Environment, 2021, 22, 100524.	0.8	3
211	Determining Statistically Robust Changes in Ungulate Browsing Pressure as a Basis for Adaptive Wildlife Management. Forests, 2021, 12, 1030.	0.9	3
212	The search for novelty continues for rewilding. Biological Conservation, 2019, 236, 584-585.	1.9	2
213	Informed conservation management of rare tree species needs knowledge of species composition, their genetic characteristics and ecological niche. Forest Ecology and Management, 2021, 483, 118771.	1.4	2
214	Dung beetle richness is positively affected by the density of wild ungulate populations in forests. Biodiversity and Conservation, 2021, 30, 3115-3131.	1.2	2
215	Settle Down! Ranging Behaviour Responses of Roe Deer to Different Capture and Release Methods. Animals, 2021, 11, 3299.	1.0	2
216	Canopy Height Estimation fromÂSpaceborne Imagery Using Convolutional Encoder-Decoder. Lecture Notes in Computer Science, 2021, , 307-317.	1.0	1

#	ARTICLE	IF	CITATIONS
217	A bottom-up practitioner-derived set of Essential Variables for Protected Area management. Environmental and Sustainability Indicators, 2022, 14, 100179.	1.7	1
218	Blue sheep strongly affect snow leopard relative abundance but not livestock depredation in the Annapurna Conservation Area, Nepal. Global Ecology and Conservation, 2022, 37, e02153.	1.0	1
219	Patterns of livestock depredation by snow leopards and effects of intervention strategies: lessons from the Nepalese Himalaya. Wildlife Research, 2022, 49, 719-737.	0.7	1
220	Measuring Leaf Angle Distribution Using Terrestrial Laser Scanning in a European Beech Forest. , 2018, , .		0
221	Carcass Provisioning for Scavenger Conservation in a Temperate Forest Ecosystem. Bulletin of the Ecological Society of America, 2020, 101, e01688.	0.2	0