List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/72052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Frequency-Tunable Second Harmonic Gyrotron With Selective Cavity: Design and Simulations. IEEE Transactions on Electron Devices, 2022, 69, 1402-1408.	3.0	4
2	Hybrid Bulk-Surface Modes Excited by a Sheet Electron Beam in THz Cherenkov Oscillator. IEEE Transactions on Electron Devices, 2022, 69, 3407-3412.	3.0	2
3	Reflective Gyrotron Backward-Wave Oscillator With Piecewise Frequency Tunability. IEEE Transactions on Electron Devices, 2021, 68, 324-329.	3.0	12
4	Dielectric property measurements of corneal tissues for computational dosimetry of the eye in terahertz band in vivo and in vitro. Biomedical Optics Express, 2021, 12, 1295.	2.9	11
5	Efficient Excitation of Hybrid Modes in a THz Clinotron. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 671-683.	2.2	11
6	Increase of Gyrotron Output Power at High-Order Axial Mode Through an After-Cavity Excitation of the Next Transverse Mode. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 684-700.	2.2	1
7	Novel and Emerging Applications of the Gyrotrons Worldwide: Current Status and Prospects. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 715-741.	2.2	56
8	Traveling-Wave Amplification in a Circuit With Nonuniform Grating. IEEE Transactions on Electron Devices, 2021, 68, 5232-5237.	3.0	5
9	Experimental investigation of gyrotron radiation frequency multiplication. , 2021, , .		0
10	Influence of the Aftercavity Interaction on the Output Power of a Gyrotron Operating at a High-Order Axial Mode. , 2021, , .		0
11	Low-Voltage Operation of the Double-Beam Gyrotron at 400 GHz. IEEE Transactions on Electron Devices, 2020, 67, 673-676.	3.0	10
12	Low-Voltage Adiabatic Magnetron Injection Gun for 400 GHz Gyrotron. , 2020, , .		0
13	Super Multi-Frequency Oscillations at Fundamental Harmonics With a Complex Cavity Gyrotron. IEEE Electron Device Letters, 2020, 41, 1241-1244.	3.9	7
14	Development of Gyrotron FU CW GVII: a Second Harmonic, Multifrequency Gyrotron that Radiates Gaussian Beams. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 576-589.	2.2	7
15	Clinical Course of High-Frequency Millimeter-Wave (162ÂGHz) Induced Ocular Injuries and Investigation of Damage Thresholds. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 834-845.	2.2	6
16	Application of the Millimeter-Wave Discharge Induced in Gas to a Wireless Power Transfer System. , 2020, , .		1
17	Observation of Multi-Frequency Oscillations at Second-Harmonics with a Two-Cavity Sub-THz Gyrotron. , 2020, , .		1
18	Frequency Measurements of a Complex-Cavity Gyrotron for 400 GHz Second-Harmonic Oscillation. ,		0

2020, , .

#	Article	IF	CITATIONS
19	An Experimental Investigation of a 0.8ÂTHz Double-Beam Gyrotron. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40, 1114-1128.	2.2	14
20	Observation of strong yellow emission for high-conductivity ZnO excited by sub-terahertz gyrotron beam. , 2019, , .		0
21	Development of a Second Harmonic Multi-Frequency Gaussian Beam Output Gyrotron FU CW GVII. , 2019, , .		О
22	Developments for collective Thomson scattering equipment with a sub-THz gyrotron in LHD. EPJ Web of Conferences, 2019, 203, 03012.	0.3	2
23	GaN Schottky Barrier Diode for Sub-Terahertz Rectenna. , 2019, , .		4
24	Experimental and Numerical study of the 0.4-THz Second-Harmonic Gyrotron with a Complex-Cavity Resonator. , 2019, , .		2
25	Oscillation Characteristics of a High Power 300 GHz Band Pulsed Gyrotron for Use in Collective Thomson Scattering Diagnostics. Plasma and Fusion Research, 2019, 14, 1406104-1406104.	0.7	5
26	Recent progress in development and application of sub-THz gyrotrons in University of Fukui. EPJ Web of Conferences, 2018, 195, 01018.	0.3	9
27	Observation of Increased Number of Frequency Steps in Multi-Frequency Oscillations with a Two-Cavity Gyrotron. , 2018, , .		3
28	Saturation Effects in Frequency Pulling of Gyrotrons Operating in High-Order Axial Modes. IEEE Transactions on Plasma Science, 2018, 46, 2848-2855.	1.3	7
29	Subterahertz Wireless Power Transmission Using 303-GHz Rectenna and 300-kW-Class Gyrotron. IEEE Microwave and Wireless Components Letters, 2018, 28, 834-836.	3.2	16
30	Strong yellow emission of high-conductivity bulk ZnO single crystals irradiated with high-power gyrotron beam. Applied Physics Letters, 2017, 111, .	3.3	42
31	Development of 300 GHz Band Gyrotron for Collective Thomson Scattering Diagnostics in the Large Helical Device. Plasma and Fusion Research, 2017, 12, 1206013-1206013.	0.7	17
32	Electromagnetic Modeling of a Complex-Cavity Resonator for the 0.4-THz Second-Harmonic Frequency-Tunable Gyrotron. IEEE Transactions on Electron Devices, 2017, 64, 5141-5146.	3.0	16
33	Influence of thermal-insulation structure of thermionic cathode on oscillation efficiency of a sub-THz gyrotron. , 2016, , .		1
34	Frequency tunability in both 200 and 400 GHz bands realized in Gyrotrons FU CW GIV and FU CW X. , 2016, , .		3
35	Influence of the electron velocity spread and the beam width on the efficiency and mode competition in the high-power pulsed gyrotron for 300 GHz band collective Thomson scattering diagnostics in the large helical device. Physics of Plasmas, 2016, 23, .	1.9	13
36	Further Characterization of 394-GHz Gyrotron FU CW GII with Additional PID Control System for 600-MHz DNP-SSNMR Spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 825-836.	2.2	9

#	Article	IF	CITATIONS
37	Start-up scenario of a high-power pulsed gyrotron for 300 GHz band collective Thomson scattering diagnostics in the large helical device. Physics of Plasmas, 2016, 23, .	1.9	13
38	High power 303 GHz gyrotron for CTS in LHD. Journal of Instrumentation, 2015, 10, C10002-C10002.	1.2	21
39	First millimeter-wave spectroscopy of ground-state positronium. Progress of Theoretical and Experimental Physics, 2015, 2015, 11C01-0.	6.6	38
40	Development of the Multifrequency Gyrotron FU CW GV with Gaussian Beam Output. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36, 697-708.	2.2	25
41	The Development of 460 GHz gyrotrons for 700 MHz DNP-NMR spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36, 613-627.	2.2	47
42	High-power pulsed gyrotron for 300 GHz-band collective Thomson scattering diagnostics in the Large Helical Device. Nuclear Fusion, 2015, 55, 013002.	3.5	26
43	Spectrum response and analysis of 77 GHz band collective Thomson scattering diagnostic for bulk and fast ions in LHD plasmas. Nuclear Fusion, 2014, 54, 023006.	3.5	65
44	Development of a multiple-frequency gyrotron, gyrotron FU CW GV. , 2014, , .		1
45	Analysis of oscillation characteristics and optimal conditions for high power operation of Gyrotron FU CW GIII. Physics of Plasmas, 2014, 21, 083113.	1.9	5
46	The Direct Spectroscopy of Positronium Hyperfine Structure Using a Sub-THz Gyrotron. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35, 91-100.	2.2	26
47	Development of second harmonic gyrotrons, Gyrotron FU CW GII and Gyrotron FU CW GIII, equipped with internal mode converters. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35, 169-178.	2.2	24
48	Characteristics of the mode converter of Gyrotron FU CW GII radiating Gaussian beams in both the fundamental and second harmonic frequency bands. Journal of Infrared, Millimeter, and Terahertz Waves, 2014, 35, 517-524.	2.2	19
49	Broadband Continuously Frequency Tunable Gyrotron for 600 MHz DNP-NMR Spectroscopy. Plasma and Fusion Research, 2014, 9, 1206058-1206058.	0.7	18
50	Sub-THz spectroscopy of the ground state hyperfine splitting of positronium. , 2013, , .		0
51	Experiment for over 200 kW oscillation of a 295 GHz pulse gyrotron. , 2013, , .		3
52	The sub-THz direct spectroscopy of positronium hyperfine splitting. Journal of Physics: Conference Series, 2013, 443, 012002.	0.4	1
53	Development of a high-power 295 GHz fundamental-harmonic gyrotron. , 2012, , .		3

#	Article	IF	CITATIONS
55	Generation of high power sub-terahertz radiation from a gyrotron with second harmonic oscillation. Physics of Plasmas, 2012, 19, .	1.9	63
56	Observation of Dynamic Interactions between Fundamental and Second-Harmonic Modes in a High-Power Sub-Terahertz Gyrotron Operating in Regimes of Soft and Hard Self-Excitation. Physical Review Letters, 2012, 109, 155001.	7.8	47
57	Formation of a laminar electron flow for 300 GHz high-power pulsed gyrotron. Physics of Plasmas, 2012, 19, .	1.9	30
58	Development of a kW Level-200ÂGHz Gyrotron FU CW GI with an Internal Quasi-optical Mode Convertor. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33, 292-305.	2.2	39
59	Formation of Laminar Electron Flow for a High-Power Sub-THz Gyrotron. Plasma and Fusion Research, 2012, 7, 1205004-1205004.	0.7	9
60	Calculations of Starting Currents and Frequencies in Frequency-Tunable Gyrotrons. Japanese Journal of Applied Physics, 2012, 51, 126601.	1.5	15
61	Review of Subterahertz and Terahertz Gyrodevices at IAP RAS and FIR FU. IEEE Transactions on Plasma Science, 2009, 37, 36-43.	1.3	120
62	Development of a Novel High Power Sub-THz Second Harmonic Gyrotron. Physical Review Letters, 2009, 103, 225002.	7.8	83
63	The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range — A review of novel and prospective applications. Thin Solid Films, 2008, 517, 1503-1506.	1.8	57
64	Performance Test of CW 300ÂGHz Gyrotron FU CW I. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 28, 1063-1078.	0.6	31