Hosahalli S Ramaswamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7204851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Detailed Review on Quality Parameters of Functional Noodles. Food Reviews International, 2023, 39, 6162-6198.	8.4	5
2	Hybrid microwave-hot air tunnel drying of onion slices: Drying kinetics, energy efficiency, product rehydration, color, and flavor characteristics. Drying Technology, 2022, 40, 966-986.	3.1	37
3	Guidelines on reporting treatment conditions for emerging technologies in food processing. Critical Reviews in Food Science and Nutrition, 2022, 62, 5925-5949.	10.3	34
4	High pressure destruction kinetics of Clostridium botulinum (Group I, strain PA9508B) spores in milk at elevated temperatures. LWT - Food Science and Technology, 2022, 154, 112671.	5.2	5
5	Facilitating high pressure phase-transition research and kinetics studies at subzero temperatures using self-cooling laboratory units. Food Research International, 2022, 151, 110857.	6.2	7
6	Maltodextrin Moderated Microwave Osmotic Dehydration of Mango Cubes with Finish Air-Drying: Optimum Considerations. Journal of Composites Science, 2022, 6, 56.	3.0	1
7	Tracking Mustard Slurry Allergen Reactivity Through Stove Top Cooking and Enhanced Thermal Treatments Using Sandwich ELISA. Food and Bioprocess Technology, 2022, 15, 806-820.	4.7	1
8	Demonstration of Escherichia coli Inactivation in Sterile Physiological Saline under High Pressure (HP) Phase Transition Conditions and Analysis of Probable Contribution of HP Metastable Positions Using Model Solutions and Apple Juice. Foods, 2022, 11, 1080.	4.3	7
9	The Effect of Pressure–Shift Freezing versus Air Freezing and Liquid Immersion on the Quality of Frozen Fish during Storage. Foods, 2022, 11, 1842.	4.3	12
10	Kinetic modeling of microwave osmotic dehydration of mangoes under continuous flow medium spray conditions using sucrose and maltodextrin (10-18 DE) solute mixtures. Drying Technology, 2021, 39, 713-725.	3.1	10
11	Changes in carbohydrate quality of high-pressure treated aqueous aquafaba. Food Hydrocolloids, 2021, 113, 106417.	10.7	15
12	Effect of flaxseed-mucilage and Stevia on physico-chemical, antioxidant and sensorial properties of formulated cocoa milk. Food Hydrocolloids for Health, 2021, 1, 100017.	3.9	4
13	Evaluation of Changes in Protein Quality of High-Pressure Treated Aqueous Aquafaba. Molecules, 2021, 26, 234.	3.8	20
14	Fundamentals of mass transfer in food engineering. , 2021, , 365-375.		1
15	High pressure assisted extraction for cadmium decontamination of long rice grain. Food Control, 2021, 125, 107987.	5.5	6
16	Production and quality improvement of Indian cottage cheese (Paneer) using high pressure processing. Innovative Food Science and Emerging Technologies, 2021, 72, 102746.	5.6	11
17	Optimization of maltodextrin (10DE)—Sucrose moderated microwave osmotic dehydration of mango cubes under continuous flow spray mode (MWODS) conditions. Journal of Food Process Engineering, 2021, 44, e13835.	2.9	3

18

#	Article	IF	CITATIONS
19	Optimized Extraction and Characterization of Folates From Date Palm Fruits and Their Tracking During Fruits Wine Fermentation. Frontiers in Nutrition, 2021, 8, 699555.	3.7	7
20	A concise review on food quality assessment using digital image processing. Trends in Food Science and Technology, 2021, 118, 106-124.	15.1	48
21	Evaluation of Freeze Drying and Electrospinning Techniques for Saffron Encapsulation and Storage Stability of Encapsulated Bioactives. Journal of Composites Science, 2021, 5, 326.	3.0	8
22	Evaluation of mass transfer kinetics and quality of microwaveâ€osmotic dehydrated mango cubes under continuous flow medium spray (MWODS) conditions in sucrose syrup as moderated by dextrose and maltodextrin supplements. Drying Technology, 2020, 38, 1036-1050.	3.1	8
23	Effect of microencapsulation on antioxidant and antifungal properties of aqueous extract of pomegranate peel. Journal of Food Science and Technology, 2020, 57, 723-733.	2.8	18
24	Evaluation of physicochemical, thermomechanical, and structural properties of chickpea flour composite films reinforced with crystalline nanocellulose. Journal of Applied Polymer Science, 2020, 137, 48389.	2.6	2
25	Ultrasoundâ€ s team combination process for microbial decontamination and heat transfer enhancement. Journal of Food Process Engineering, 2020, 43, e13367.	2.9	9
26	Evaluation of thermal and nonthermal treatment of margarine: Pasteurization process efficiency, kinetics of microbial destruction, and changes in thermophysical characteristics. Journal of Food Processing and Preservation, 2020, 44, e14323.	2.0	3
27	The Impact of Temperature Treatments on Elicitation of the Phenylpropanoid Pathway, Phenolic Accumulations and Antioxidative Capacities of Common Bean (Phaseolus vulgaris) Sprouts. Food and Bioprocess Technology, 2020, 13, 1544-1555.	4.7	8
28	Stability of hydrocolloid enriched oil-in-water emulsions in beverages subjected to thermal and nonthermal processing. Journal of Dispersion Science and Technology, 2020, , 1-11.	2.4	2
29	The Effect of Sodium Alginate-Calcium Chloride Coating on the Quality Parameters and Shelf Life of Strawberry Cut Fruits. Journal of Composites Science, 2020, 4, 123.	3.0	39
30	Elicitation kinetics of phenolics in common bean (Phaseolus vulgaris) sprouts by thermal treatments. , 2020, 2, e56.		6
31	Effect of Low-Temperature-High-Pressure Treatment on the Reduction of Escherichia coli in Milk. Foods, 2020, 9, 1742.	4.3	15
32	Effect of utilization of alternative hydrocolloid-based stabilizers on rheology of oil-in-water beverage emulsions. Journal of Food Measurement and Characterization, 2020, 14, 1744-1753.	3.2	4
33	Comparison of pulsed light inactivation kinetics and modeling of Escherichia coli (ATCC-29055), Clostridium sporogenes (ATCC-7955) and Geobacillus stearothermophilus (ATCC-10149). Current Research in Food Science, 2020, 3, 82-91.	5.8	19
34	Evaluation of factors affecting aquafaba rheological and thermal properties. LWT - Food Science and Technology, 2020, 132, 109831.	5.2	16
35	The impact of ultrasonic treatment on blueberry wine anthocyanin color and its In-vitro anti-oxidant capacity. Food Chemistry, 2020, 333, 127455.	8.2	62
36	Reduction in soaking time and anti-nutritional factors by high pressure processing of chickpeas. Journal of Food Science and Technology, 2020, 57, 2572-2585.	2.8	24

#	Article	IF	CITATIONS
37	Effect of germination and high pressure treatments on brown rice flour rheological, pasting, textural, and structural properties. Journal of Food Processing and Preservation, 2020, 44, e14474.	2.0	13
38	Melting endothermic technique for establishing different phase diagram pathways during high pressure treatment of liquid foods. Innovative Food Science and Emerging Technologies, 2020, 62, 102361.	5.6	11
39	Evaluation and optimization of functional and antinutritional properties of aquafaba. , 2020, 2, e30.		30
40	Evaluation of thermal destruction kinetics of Clostridium difficile spores (ATCC 17857) in lean ground beef with firstâ€order/Weibull modeling considerations. Journal of Food Process Engineering, 2019, 42, e13273.	2.9	3
41	Microwave Processing: Current Background and Effects on the Physicochemical and Microbiological Aspects of Dairy Products. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 67-83.	11.7	58
42	Investigating the influence of pH and selected heating media on thermal destruction kinetics of Geobacillus stearothermophilus (ATCC10149). Journal of Food Measurement and Characterization, 2019, 13, 1310-1322.	3.2	4
43	Effect of Soluble Solids and High Pressure Treatment on Rheological Properties of Protein Enriched Mango Puree. Foods, 2019, 8, 39.	4.3	6
44	Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab). Polymer Testing, 2019, 75, 76-84.	4.8	84
45	Antioxidant capacity and hepatoprotective activity of myristic acid acylated derivative of phloridzin. Heliyon, 2019, 5, e01761.	3.2	16
46	Comparison of germination–parboiling, freeze–thaw cycle, and high pressure processing on the cooking quality of brown rice. Journal of Food Process Engineering, 2019, 42, e13135.	2.9	9
47	Application and Evaluation of a Pectin-Based Edible Coating Process for Quality Change Kinetics and Shelf-Life Extension of Lime Fruit (Citrus aurantifolium). Coatings, 2019, 9, 285.	2.6	53
48	Evaluation of the oxidation kinetics and stability of soybean oil supplemented with ethanolic extract of Nepeta (Nepeta binaludensis Jamzad) as compared to butylated hydroxytoluene. Chemical Papers, 2019, 73, 2231-2239.	2.2	2
49	Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. LWT - Food Science and Technology, 2019, 101, 342-350.	5.2	128
50	Physicochemical and Phytochemical Characterization and Storage Stability of Freeze-dried Encapsulated Pomegranate Peel Anthocyanin and In Vitro Evaluation of Its Antioxidant Activity. Food and Bioprocess Technology, 2019, 12, 199-210.	4.7	35
51	Effect of heating rates on thermal destruction kinetics of Escherichia coli ATCC25922 in mashed potato and the associated changes in product color. Food Control, 2019, 97, 39-49.	5.5	16
52	High pressure impregnation of oil in water emulsions into selected fruits: A novel approach to fortify plant-based biomaterials by lipophilic compounds. LWT - Food Science and Technology, 2019, 101, 506-512.	5.2	9
53	Development and evaluation of antibacterial electrospun pea protein isolate-polyvinyl alcohol nanocomposite mats incorporated with cinnamaldehyde. Materials Science and Engineering C, 2019, 94, 393-402.	7.3	64
54	High pressure impregnation (HPI) of apple cubes: Effect of pressure variables and carrier medium. Food Research International, 2019, 116, 320-328.	6.2	15

2.9

1

#	Article	IF	CITATIONS
55	Hybrid Fickian–Darcian flow model for high pressure impregnation of fluids into porous biomaterials. Biosystems Engineering, 2018, 166, 200-209.	4.3	7
56	Effect of feed components on quality parameters of wheat–tef–sesame–tomato based extruded products. Journal of Food Science and Technology, 2018, 55, 2649-2660.	2.8	15
57	Effect of high pressure processing on rancidity of brown rice during storage. LWT - Food Science and Technology, 2018, 93, 405-411.	5.2	29
58	High-pressure induced thermo-viscoelasticity and dynamic rheology of gum Arabic and chitosan aqueous dispersions. LWT - Food Science and Technology, 2018, 89, 291-298.	5.2	19
59	Comparison of Germination-Parboiling, Freeze-Thaw Cycle and High Pressure Processing on Phytochemical Content and Antioxidant Activity in Brown Rice Evaluated after Cooking and In-Vitro Digestion. International Journal of Food Engineering, 2018, 14, .	1.5	4
60	Thermal-death kinetics of the bark beetle (<i>Dendroctonus armandi</i> ; <i>Coleoptera:) Tj ETQq0 0 0 rgBT /Ove</i>	rlock 10 T 1.4	f 50 542 Td
61	Novel techniques in food processing: bionanocomposites. Current Opinion in Food Science, 2018, 23, 49-56.	8.0	23
62	Thermal Conductivity of Selected Foods at High-Pressure Processing Conditions. Transactions of the ASABE, 2018, 61, 317-325.	1.1	3
63	Adiabatic compression heating of selected organic solvents under high pressure processing. High Pressure Research, 2018, 38, 325-336.	1.2	9
64	Novel processing methods: updates on acidified vegetables thermal processing. Current Opinion in Food Science, 2018, 23, 64-69.	8.0	15
65	High Pressure Processing Treatment of Fresh-Cut Carrots: Effect of Presoaking in Calcium Salts on Quality Parameters. Journal of Food Quality, 2018, 2018, 1-9.	2.6	7
66	Pulsed light technology to enhance food safety and quality: a mini-review. Current Opinion in Food Science, 2018, 23, 70-79.	8.0	64
67	Recent advances in agitation thermal processing. Current Opinion in Food Science, 2018, 23, 90-96.	8.0	20
68	Classification of impact injury of apples using electronic nose coupled with multivariate statistical analyses. Journal of Food Process Engineering, 2018, 41, e12698.	2.9	17
69	Radio Frequency-Vacuum Drying of Kiwifruits: Kinetics, Uniformity, and Product Quality. Food and Bioprocess Technology, 2018, 11, 2094-2109.	4.7	60
70	Heat transfer phenomena during thermal processing of liquid particulate mixtures—A review. Critical Reviews in Food Science and Nutrition, 2017, 57, 1350-1364.	10.3	22
71	High Pressure Extraction of Astaxanthin from Shrimp Waste (<i>Penaeus Vannamei</i> Boone): Effect on Yield and Antioxidant Activity. Journal of Food Process Engineering, 2017, 40, e12353.	2.9	42

Field Conductivity of Cabbage and Daikon Radish as Affected by Electrical Voltage, Frequency, Salt Concentration and Temperature. Journal of Food Process Engineering, 2017, 40, e12315.

Hosahalli S Ramaswamy

#	Article	IF	CITATIONS
73	Phase transitions during high pressure treatment of frozen carrot juice and influence on Escherichia coli inactivation. LWT - Food Science and Technology, 2017, 79, 119-125.	5.2	20
74	Residence time distribution and flow pattern of reduced-gluten wheat-based formulations in a twin–screw extruder. LWT - Food Science and Technology, 2017, 79, 213-222.	5.2	13
75	Effects of locust bean gum on the structural and rheological properties of resistant corn starch. Journal of Food Science and Technology, 2017, 54, 650-658.	2.8	20
76	Pulsed light destruction kinetics of L. monocytogenes. LWT - Food Science and Technology, 2017, 84, 114-121.	5.2	29
77	Dynamics of fluid migration into porous solid matrix during high pressure treatment. Food and Bioproducts Processing, 2017, 103, 122-130.	3.6	9
78	Using Liquid-Only Cans (Equipped with a Single Particle) to Quantify Heat Transfer Phenomenon During Thermal Processing. International Journal of Food Engineering, 2017, 13, .	1.5	2
79	Effect of high pressure treatment and short term storage on changes in main volatile compounds of Chinese liquor. Scientific Reports, 2017, 7, 17228.	3.3	9
80	Infrared thermography as a complementary tool for the evaluation of heat transfer in the freezing of fruit juice model solutions. International Journal of Thermal Sciences, 2017, 120, 386-399.	4.9	8
81	Effect of reciprocating agitation thermal processing (RAâ€TP) on quality of canned tomato (<i>Solanum) Tj ETQ</i>	q1 <u>1</u> 0.784	1314 rgBT /O
82	Recycling of osmotic solutions in microwave–osmotic dehydration: product quality and potential for creation of a novel product. Journal of the Science of Food and Agriculture, 2016, 96, 3515-3523.	3.5	2
83	A Controlled Agitation Process for Improving Quality of Canned Green Beans during Agitation Thermal Processing. Journal of Food Science, 2016, 81, E1399-411.	3.1	27
84	Quality Retention Enhancement in Canned Potato and Radish Using Reciprocating Agitation Thermal Processing. International Journal of Food Engineering, 2016, 12, 491-500.	1.5	5
85	Ohmic Heating Behaviour of Cabbage and Daikon Radish. Food and Bioprocess Technology, 2016, 9, 430-440.	4.7	9
86	Simultaneous optimization of heat transfer and reciprocation intensity for thermal processing of liquid particulate mixtures undergoing reciprocating agitation. Innovative Food Science and Emerging Technologies, 2016, 33, 405-415.	5.6	18
87	Effect of high-pressure treatment on the structural and rheological properties of resistant corn starch/locust bean gum mixtures. Carbohydrate Polymers, 2016, 150, 299-307.	10.2	20
88	Dimensionless correlations for heat transfer coefficients during reciprocating agitation thermal processing (RA-TP) of Newtonian liquid/particulate mixtures. Food and Bioproducts Processing, 2016, 97, 76-87.	3.6	5
89	Pressure Shift Freezing and Thawing. Food Engineering Series, 2016, , 143-166.	0.7	0
90	A novel approach for quantification of particle motion and particle mixing during agitation thermal processing. Journal of Food Engineering, 2016, 180, 39-47.	5.2	4

#	Article	IF	CITATIONS
91	Pressure Degradation Kinetics of Anthocyanin Pigment and Visual Color of Chinese Bayberry Juice. International Journal of Food Properties, 2016, 19, 443-453.	3.0	20
92	Heat transfer coefficients during thermal processing of model particulate mixtures in non-Newtonian fluids undergoing reciprocation agitation as affected by process variables. LWT - Food Science and Technology, 2016, 65, 185-196.	5.2	5
93	Microwaveâ€Osmotic/Microwaveâ€Vacuum Drying of Whole Cranberries: Comparison with Other Methods. Journal of Food Science, 2015, 80, E2792-802.	3.1	13
94	Storage Stability of Chinese Bayberry Juice after High Pressure or Thermal Treatment. Journal of Food Processing and Preservation, 2015, 39, 2259-2266.	2.0	13
95	Quality Attributes of Microwave Vacuum Finish-Dried Fresh and Microwave-Osmotic Pretreated Cranberries. Journal of Food Processing and Preservation, 2015, 39, 3067-3079.	2.0	7
96	Microbiological Design and Validation of Thermal and High Pressure Processing of Acidified Carrots and Assessment of Product Quality. Journal of Food Processing and Preservation, 2015, 39, 2991-3004.	2.0	4
97	Modification of a static steam retort for evaluating heat transfer under reciprocation agitation thermal processing. Journal of Food Engineering, 2015, 153, 63-72.	5.2	35
98	Comparison of Viscoelastic Properties of Set and Stirred Yogurts Made from High Pressure and Thermally Treated Milks. International Journal of Food Properties, 2015, 18, 1513-1523.	3.0	12
99	Novel Concepts in Microwave Drying of Foods. Drying Technology, 2015, 33, 769-783.	3.1	124
100	Computational techniques used in heat transfer studies on canned liquid-particulate mixtures. Trends in Food Science and Technology, 2015, 43, 83-103.	15.1	26
101	Effect of product related parameters on heat-transfer rates to canned particulate non-Newtonian fluids (CMC) during reciprocation agitation thermal processing. Journal of Food Engineering, 2015, 165, 1-12.	5.2	19
102	Effect of Can Orientation on Heat Transfer Coefficients Associated with Liquid Particulate Mixtures During Reciprocation Agitation Thermal Processing. Food and Bioprocess Technology, 2015, 8, 1405-1418.	4.7	21
103	Development of a Microwave–Vacuum-Based Dehydration Technique for Fresh and Microwave–Osmotic (MWODS) Pretreated Whole Cranberries (<i>Vaccinium macrocarpon</i>). Drying Technology, 2015, 33, 796-807.	3.1	20
104	A refined methodology for evaluation of heat transfer coefficients in canned particulate fluids under rapid heating conditions. Food and Bioproducts Processing, 2015, 94, 169-179.	3.6	19
105	Back Extrusion Rheology for Evaluating the Transitional Effects of High Pressure Processing of Egg Components. Journal of Texture Studies, 2015, 46, 34-45.	2.5	16
106	Effect of processing conditions on quality of green beans subjected to reciprocating agitation thermal processing. Food Research International, 2015, 78, 424-432.	6.2	22
107	Thermal and High-Pressure Inactivation Kinetics of Avidin. Journal of Food Processing and Preservation, 2014, 38, 1830-1839.	2.0	7
108	Residence Time Distribution of Soy Protein Isolate and Corn Flour Feed Mix in a Twin-Screw Extruder. Journal of Food Processing and Preservation, 2014, 38, 573-584.	2.0	16

#	Article	IF	CITATIONS
109	Quality Optimization of Canned Potatoes during Rotary Autoclaving. Journal of Food Quality, 2014, 37, 168-176.	2.6	9
110	Comparison of free/bi-axial, fixed axial, end-over-end and static thermal processing effects on process lethality and quality changes in canned potatoes. LWT - Food Science and Technology, 2014, 58, 150-157.	5.2	16
111	Combined effects of high pressure, moderate heat and pH on the inactivation kinetics of Bacillus licheniformis spores in carrot juice. Food Research International, 2014, 62, 50-58.	6.2	34
112	Effect of Novel Processing Techniques on Texture Softening and β-Carotene Content of Thermally Processed Carrots. Food and Bioprocess Technology, 2014, 7, 2986-2999.	4.7	10
113	Effect of highâ€pressure treatment on trypsin hydrolysis and antioxidant activity of egg white proteins. International Journal of Food Science and Technology, 2014, 49, 269-279.	2.7	28
114	Thermal destruction kinetics of Bacillus licheniformis spores in carrot juice extract as influenced by pH, type of acidifying agent and heating method. LWT - Food Science and Technology, 2014, 56, 131-137.	5.2	20
115	Kinetics of Escherichia coli inactivation in frozen aqueous suspensions by high pressure and its application to frozen chicken meat. Journal of Food Engineering, 2014, 142, 23-30.	5.2	20
116	Thermal characterization and ice crystal analysis in pressure shift freezing of different muscle (shrimp and porcine liver) versus conventional freezing method. Innovative Food Science and Emerging Technologies, 2014, 26, 40-50.	5.6	47
117	Ohmic Tempering of Frozen Potato Puree. Food and Bioprocess Technology, 2013, 6, 3200-3205.	4.7	31
118	Evaluation of high pressure (HP) treatment for rapid and uniform pH reduction in carrots. Journal of Food Engineering, 2013, 116, 900-909.	5.2	16
119	Protein rich extruded products prepared from soy protein isolate-corn flour blends. LWT - Food Science and Technology, 2013, 50, 279-289.	5.2	63
120	Bio-validation of bi-axial rotary thermal processing. LWT - Food Science and Technology, 2013, 53, 418-425.	5.2	3
121	Microwave-Osmotic Dehydration of Cranberries under Continuous Flow Medium Spray Conditions. International Journal of Microwave Science and Technology, 2013, 2013, 1-11.	0.6	12
122	Optimization of Instrumental Texture of Carrot and Meat Alginate Simulated Particles for Use in Thermal Processing Biological Validation Studies. International Journal of Food Properties, 2012, 15, 1319-1335.	3.0	6
123	Overall and Fluid-to-particle Heat Transfer Coefficients associated with Canned Particulate non-Newtonian Fluids during Free Bi-axial Rotary Thermal Processing. International Journal of Food Engineering, 2012, 8, .	1.5	7
124	Evaluation of Factors Influencing Microwave Osmotic Dehydration of Apples Under Continuous Flow Medium Spray (MWODS) Conditions. Food and Bioprocess Technology, 2012, 5, 1265-1277.	4.7	13
125	Modeling and Optimization of Microwave Osmotic Dehydration of Apple Cylinders Under Continuous-Flow Spray Mode Processing Conditions. Food and Bioprocess Technology, 2012, 5, 1486-1501.	4.7	34
126	PECTINâ€BASED EDIBLE COATING FOR SHELFâ€LIFE EXTENSION OF ATAULFO MANGO. Journal of Food Process Engineering, 2012, 35, 572-600.	2.9	92

#	Article	IF	CITATIONS
127	HIGH-PRESSURE DESTRUCTION KINETICS OF SPOILAGE AND PATHOGENIC MICROORGANISMS IN MANGO JUICE. Journal of Food Processing and Preservation, 2012, 36, 113-125.	2.0	52
128	Application of Hyperspectral Technique for Color Classification Avocados Subjected to Different Treatments. Food and Bioprocess Technology, 2012, 5, 252-264.	4.7	35
129	Twin-screw Extrusion of Corn Flour and Soy Protein Isolate (SPI) Blends: A Response Surface Analysis. Food and Bioprocess Technology, 2012, 5, 485-497.	4.7	62
130	Effect of Soluble Solids Concentration and Temperature on Thermo-Physical and Rheological Properties of Mango Puree. International Journal of Food Properties, 2011, 14, 1018-1036.	3.0	29
131	HEAT RESISTANCE OF G. STEAROTHERMOPHILUS AND C. SPOROGENES IN CARROT AND MEAT ALGINATE PUREES. Journal of Food Processing and Preservation, 2011, 35, 376-385.	2.0	10
132	Measurement and targeting of thermophysical properties of carrot and meat based alginate particles for thermal processing applications. Journal of Food Engineering, 2011, 107, 117-126.	5.2	17
133	Effect of Process Variables on Heat-Transfer Rates to Canned Particulate Newtonian Fluids During Free Bi-axial Rotary Processing. Food and Bioprocess Technology, 2011, 4, 61-78.	4.7	13
134	Clostridium sporogenes-ATCC 7955 Spore Destruction Kinetics in Milk Under High Pressure and Elevated Temperature Treatment Conditions. Food and Bioprocess Technology, 2011, 4, 458-468.	4.7	31
135	Influence of Microwave Osmotic Dehydration Pre-Treatment on the Second Stage of Air-Drying Kinetics of Apples. International Journal of Food Engineering, 2011, 7, .	1.5	6
136	Optimization of Microwave-Osmotic Pretreatment of Apples with Subsequent Air-Drying for Preparing High-Quality Dried Product. International Journal of Microwave Science and Technology, 2011, 2011, 1-12.	0.6	9
137	Evaluation of Phosphatase Inactivation Kinetics in Milk Under Continuous Flow Microwave and Conventional Heating Conditions. International Journal of Food Properties, 2011, 14, 110-123.	3.0	26
138	Influence of System Variables on the Heating Characteristics of Water during Continuous Flow Microwave Heating. International Journal of Microwave Science and Technology, 2011, 2011, 1-10.	0.6	1
139	Compression Heating and Temperature Control for High-Pressure Destruction of Bacterial Spores: An Experimental Method for Kinetics Evaluation. Food and Bioprocess Technology, 2010, 3, 71-78.	4.7	43
140	An Empirical Methodology for Evaluating the Fluid to Particle Heat Transfer Coefficient in Bi-axially Rotating Cans Using Liquid Temperature Data. Food and Bioprocess Technology, 2010, 3, 716-731.	4.7	13
141	High-pressure destruction kinetics of Clostridium sporogenes ATCC 11437 spores in milk at elevated quasi-isothermal conditions. Journal of Food Engineering, 2010, 96, 249-257.	5.2	46
142	NEURAL NETWORK MODELING OF ENDâ€OVERâ€END THERMAL PROCESSING OF PARTICULATES IN VISCOUS FLUIDS. Journal of Food Process Engineering, 2010, 33, 23-47.	2.9	4
143	DIMENSIONLESS CORRELATIONS FOR CONVECTIVE HEAT TRANSFER IN CANNED PARTICULATE FLUIDS UNDER AXIAL ROTATION PROCESSING. Journal of Food Process Engineering, 2010, 33, 182-207.	2.9	5
144	Osmotic Dehydration: Dynamics of Equilibrium and Pseudo-Equilibrium Kinetics. International Journal of Food Properties, 2010, 13, 234-250.	3.0	7

#	Article	IF	CITATIONS
145	High Pressure Destruction Kinetics of <i>Clostridium Sporogenes</i> Spores in Salmon Slurry at Elevated Temperatures. International Journal of Food Properties, 2010, 13, 1074-1091.	3.0	20
146	Artificial Neural Network Modelling of Heat Transfer to Canned Particulate Fluids under Axial Rotation Processing. International Journal of Food Engineering, 2010, 6, .	1.5	3
147	Comparison of heat transfer rates during thermal processing under end-over-end and axial modes of rotation. LWT - Food Science and Technology, 2010, 43, 350-360.	5.2	22
148	Microwave-Osmotic Dehydration of Apples Under Continuous Flow Medium Spray Conditions: Comparison with Other Methods. Drying Technology, 2009, 28, 49-56.	3.1	35
149	Effects of fat, casein and lactose on high-pressure destruction of Escherichia coli K12 (ATCC-29055) in milk. Food and Bioproducts Processing, 2009, 87, 1-6.	3.6	31
150	COMPARATIVE STUDY OF WIRELESS VERSUS STANDARD THERMOCOUPLES FOR DATA GATHERING AND ANALYSES IN ROTARY COOKERS. Journal of Food Processing and Preservation, 2009, 34, 557.	2.0	0
151	Effect of high pressure treatment on thermal and rheological properties of lentil flour slurry. LWT - Food Science and Technology, 2009, 42, 1538-1544.	5.2	40
152	Kinetic Considerations of Texture Softening in Heat Treated Root Vegetables. International Journal of Food Properties, 2009, 12, 114-128.	3.0	15
153	Evaluation of Diffusion and Azuara Models for Mass Transfer Kinetics during Microwave-Osmotic Dehydration of Apples under Continuous Flow Medium-Spray Conditions. Drying Technology, 2009, 28, 57-67.	3.1	27
154	Heat Transfer in Rotary Processing of Canned Liquid/Particle Mixtures. Contemporary Food Engineering, 2009, , .	0.2	1
155	High pressure gelation of soy proteins: Effect of concentration, pH and additives. Journal of Food Engineering, 2008, 88, 331-340.	5.2	69
156	Rheology and Stability of Beverage Emulsions in the Presence and Absence of Weighting Agents: A Review. Food Biophysics, 2008, 3, 279-286.	3.0	55
157	High pressure destruction kinetics of Escherichia coli (O157:H7) and Listeria monocytogenes (Scott A) in a fish slurry. Journal of Food Engineering, 2008, 87, 99-106.	5.2	58
158	Shelfâ€life extension of peaches through sodium alginate and methyl cellulose edible coatings. International Journal of Food Science and Technology, 2008, 43, 951-957.	2.7	182
159	Modelling of cookingâ€cooling processes for meat and poultry products. International Journal of Food Science and Technology, 2008, 43, 673-684.	2.7	14
160	Thermal and dynamic rheology of insoluble starch from basmati rice. Food Hydrocolloids, 2008, 22, 278-287.	10.7	79
161	High-pressure destruction kinetics of Clostridium sporogenes spores in ground beef at elevated temperatures. International Journal of Food Microbiology, 2008, 126, 86-92.	4.7	59
162	Steady and Dynamic Shear Rheological Properties, and Stability of Non-Flocculated and Flocculated Beverage Cloud Emulsions. International Journal of Food Properties, 2008, 11, 24-43.	3.0	15

#	Article	IF	CITATIONS
163	Application of High Pressure Processing To Kill Escherichia coli O157 in Ready-to-Eat Meats. Journal of Food Protection, 2008, 71, 2182-2189.	1.7	38
164	Dynamic Viscoelastic Behavior of High Pressure Treated Soybean Protein Isolate Dispersions. International Journal of Food Properties, 2007, 10, 397-411.	3.0	34
165	Moisture Sorption Behavior, and Effect of Moisture Content and Sorbitol on Thermo-Mechanical and Barrier Properties of Pectin Based Edible Films. International Journal of Food Engineering, 2007, 3, .	1.5	8
166	System variables affecting heat transfer in a canned particle in Newtonian fluid system during end-over-end rotation. LWT - Food Science and Technology, 2007, 40, 1240-1245.	5.2	14
167	Effect of high-pressure treatment on the electrospray ionization mass spectrometry (ESI-MS) profiles of whey proteins. International Dairy Journal, 2007, 17, 881-888.	3.0	12
168	Protein Denaturation, Rheology, and Gelation Characteristics of Radio-Frequency Heated Egg White Dispersions. International Journal of Food Properties, 2007, 10, 145-161.	3.0	35
169	Visualization of particle/liquid movements in high viscous fluids during end-over-end rotation. Journal of Food Engineering, 2007, 80, 545-552.	5.2	8
170	Dielectric properties of butter in the MW frequency range as affected by salt and temperature. Journal of Food Engineering, 2007, 82, 351-358.	5.2	58
171	EFFECTS OF ADDED WEIGHTING AGENT AND XANTHAN GUM ON STABILITY AND RHEOLOGICAL PROPERTIES OF BEVERAGE CLOUD EMULSIONS FORMULATED USING MODIFIED STARCH. Journal of Food Process Engineering, 2007, 30, 204-224.	2.9	79
172	EVALUATION OF FACTORS AFFECTING BARRIER, MECHANICAL AND OPTICAL PROPERTIES OF PECTINâ€BASED FILMS USING RESPONSE SURFACE METHODOLOGY. Journal of Food Process Engineering, 2007, 30, 539-563.	2.9	35
173	Effect of high-pressure treatment on rheological, thermal and structural changes in Basmati rice flour slurry. Journal of Cereal Science, 2007, 46, 148-156.	3.7	100
174	Dynamic rheology and thermal transitions in meat-based strained baby foods. Journal of Food Engineering, 2007, 78, 1274-1284.	5.2	40
175	Dimensionless heat transfer correlations for high viscosity fluid-particle mixtures in cans during end-over-end rotation. Journal of Food Engineering, 2007, 80, 528-535.	5.2	11
176	Osmotic Dehydration of Apple Cylinders: I. Conventional Batch Processing Conditions. Drying Technology, 2006, 24, 619-630.	3.1	47
177	Osmotic Dehydration of Apple Cylinders: III. Continuous Medium Flow Microwave Heating Conditions. Drying Technology, 2006, 24, 643-651.	3.1	32
178	Osmotic Dehydration of Apple Cylinders: II. Continuous Medium Flow Heating Conditions. Drying Technology, 2006, 24, 631-642.	3.1	22
179	Physicochemical changes induced in carp (Cyprinus carpio) fillets by high pressure processing at low temperature. Innovative Food Science and Emerging Technologies, 2006, 7, 13-18.	5.6	101
180	VISCOELASTIC AND THERMAL CHARACTERISTICS OF VEGETABLE PUREE-BASED BABY FOODS. Journal of Food Process Engineering, 2006, 29, 219-233.	2.9	34

#	Article	IF	CITATIONS
181	HEAT TRANSFER TO CANNED PARTICULATES IN HIGH-VISCOSITY NEWTONIAN FLUIDS DURING AGITATION PROCESSING. Journal of Food Processing and Preservation, 2006, 30, 643-658.	2.0	6
182	Thermorheological Characteristics of Soybean Protein Isolate. Journal of Food Science, 2006, 71, E158-E163.	3.1	43
183	Inactivation Kinetics of Geobacillus stearothermophilus Spores in Water Using High-pressure Processing at Elevated Temperatures. Journal of Food Science, 2006, 71, M110-M116.	3.1	41
184	Viscoelastic properties of sweet potato puree infant food. Journal of Food Engineering, 2006, 74, 376-382.	5.2	76
185	Physico-chemical properties of commercial date pastes (Phoenix dactylifera). Journal of Food Engineering, 2006, 76, 348-352.	5.2	49
186	Effect of added oil and modified starch on rheological properties, droplet size distribution, opacity and stability of beverage cloud emulsions. Journal of Food Engineering, 2006, 77, 687-696.	5.2	125
187	lce-crystal formation in gelatin gel during pressure shift versus conventional freezing. Journal of Food Engineering, 2005, 66, 69-76.	5.2	74
188	The effect of high pressure treatment on rheological characteristics and colour of mango pulp. International Journal of Food Science and Technology, 2005, 40, 885-895.	2.7	137
189	High pressure inactivation kinetics of amylase in apple juice. Journal of Food Engineering, 2004, 64, 151-160.	5.2	54
190	Title is missing!. Precision Agriculture, 2003, 4, 5-18.	6.0	54
191	HIGH PRESSURE DESTRUCTION KINETICS of INDIGENOUS MICROFLORA and ESCHERICHIA COLI IN RAW MILK AT TWO TEMPERATURES. Journal of Food Process Engineering, 2003, 26, 265-283.	2.9	22
192	High-Pressure Processing of Apple Juice: Kinetics of Pectin Methyl Esterase Inactivation. Biotechnology Progress, 2003, 19, 908-914.	2.6	37
193	EFFECT of SALT and CITRIC ACID ON ELECTRICAL CONDUCTIVITIES and OHMIC HEATING of VISCOUS LIQUIDS. Journal of Food Processing and Preservation, 2000, 24, 389-406.	2.0	26
194	Effects of concentration and temperature on carboxymethylcellulose rheology. International Journal of Food Science and Technology, 1994, 29, 243-253.	2.7	31
195	Residual peroxidase activity as influenced by blanching, SO2 treatment and freezing of cauliflowers. Journal of the Science of Food and Agriculture, 1989, 47, 377-382.	3.5	7
196	Heating Rates in Flexible Packages Containing Entrapped Air During Overpressure Processing. Journal of Food Science, 1989, 54, 1417-1421.	3.1	16
197	High-Pressure Impregnation of Foods: Technology and Modelling Approaches. Food Engineering Reviews, 0, , 1.	5.9	0
198	Extruded Snacks from Rice, Green lentil, Chickpea and Tomato Powder Finished with Frying / Microwave Roasting. Revista Facultad De IngenierÃa, 0, , .	0.5	0