
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7204848/publications.pdf Version: 2024-02-01

PEVES RADREDÃ:

#	Article	IF	CITATIONS
1	Bioavailability of Inorganic Arsenic in Cooked Rice:Â Practical Aspects for Human Health Risk Assessments. Journal of Agricultural and Food Chemistry, 2005, 53, 8829-8833.	2.4	180
2	The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 2016, 88, 217-225.	2.9	180
3	Estimation of Arsenic Bioaccessibility in Edible Seaweed by an in Vitro Digestion Method. Journal of Agricultural and Food Chemistry, 2003, 51, 6080-6085.	2.4	155
4	Effect of processing on the bioaccessibility of bioactive compounds – A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. Journal of Food Composition and Analysis, 2018, 68, 3-15.	1.9	151
5	Extending inÂvitro digestion models to specific human populations: Perspectives, practical tools and bio-relevant information. Trends in Food Science and Technology, 2017, 60, 52-63.	7.8	134
6	Availability of polyphenols in fruit beverages subjected to in vitro gastrointestinal digestion and their effects on proliferation, cell-cycle and apoptosis in human colon cancer Caco-2 cells. Food Chemistry, 2009, 114, 813-820.	4.2	126
7	Bioaccessibility of minerals in school meals: Comparison between dialysis and solubility methods. Food Chemistry, 2005, 92, 481-489.	4.2	121
8	Bioaccessibility of Tocopherols, Carotenoids, and Ascorbic Acid from Milk- and Soy-Based Fruit Beverages: Influence of Food Matrix and Processing. Journal of Agricultural and Food Chemistry, 2012, 60, 7282-7290.	2.4	115
9	Phospholipids in Human Milk and Infant Formulas: Benefits and Needs for Correct Infant Nutrition. Critical Reviews in Food Science and Nutrition, 2016, 56, 1880-1892.	5.4	111
10	Arsenosugars in Raw and Cooked Edible Seaweed:Â Characterization and Bioaccessibility. Journal of Agricultural and Food Chemistry, 2005, 53, 7344-7351.	2.4	98
11	Calcium, Iron, and Zinc Uptake from Digests of Infant Formulas by Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2001, 49, 3480-3485.	2.4	95
12	Lipid peroxidation and antioxidant enzyme activities in patients with type 1 diabetes mellitus. Scandinavian Journal of Clinical and Laboratory Investigation, 1999, 59, 99-105.	0.6	93
13	Evaluation of the Bioaccessibility of Antioxidant Bioactive Compounds and Minerals of Four Genotypes of Brassicaceae Microgreens. Foods, 2019, 8, 250.	1.9	78
14	Bioavailability of Calcium from Milk-Based Formulas and Fruit Juices Containing Milk and Cereals Estimated by in Vitro Methods (Solubility, Dialyzability, and Uptake and Transport by Caco-2 Cells). Journal of Agricultural and Food Chemistry, 2005, 53, 3721-3726.	2.4	75
15	Determination of sialic acid and gangliosides in biological samples and dairy products: A review. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 346-357.	1.4	73
16	Mercury and selenium in fish and shellfish: Occurrence, bioaccessibility and uptake by Caco-2 cells. Food and Chemical Toxicology, 2012, 50, 2696-2702.	1.8	65
17	Bioaccessibility of inorganic arsenic species in raw and cookedHizikia fusiformeseaweed. Applied Organometallic Chemistry, 2004, 18, 662-669.	1.7	64
18	Carotenoid bioaccessibility in pulp and fresh juice from carotenoid-rich sweet oranges and mandarins. Food and Function, 2015, 6, 1950-1959.	2.1	63

#	Article	IF	CITATIONS
19	Influence of storage and in vitro gastrointestinal digestion on total antioxidant capacity of fruit beverages. Journal of Food Composition and Analysis, 2011, 24, 87-94.	1.9	60
20	Selenium, Zinc and Copper in Plasma of patients with Type 1 Diabetes Mellitus in Different Metabolic Control States. Journal of Trace Elements in Medicine and Biology, 1998, 12, 91-95.	1.5	58
21	Bioaccessibility and Transport by Caco-2 Cells of Organoarsenical Species Present in Seafood. Journal of Agricultural and Food Chemistry, 2007, 55, 5892-5897.	2.4	58
22	Stability of Plant Sterols in Ingredients Used in Functional Foods. Journal of Agricultural and Food Chemistry, 2011, 59, 3624-3631.	2.4	57
23	Iron and zinc bioavailability in Caco-2 cells: Influence of caseinophosphopeptides. Food Chemistry, 2013, 138, 1298-1303.	4.2	56
24	Impact of Lipid Components and Emulsifiers on Plant Sterols Bioaccessibility from Milk-Based Fruit Beverages. Journal of Agricultural and Food Chemistry, 2016, 64, 5686-5691.	2.4	56
25	Fortification of Milk with Calcium:Â Effect on Calcium Bioavailability and Interactions with Iron and Zinc. Journal of Agricultural and Food Chemistry, 2006, 54, 4901-4906.	2.4	55
26	Effect of processing and food matrix on calcium and phosphorous bioavailability from milk-based fruit beverages in Caco-2 cells. Food Research International, 2011, 44, 3030-3038.	2.9	55
27	Effects of legume processing on calcium, iron and zinc contents and dialysabilities. Journal of the Science of Food and Agriculture, 2001, 81, 1180-1185.	1.7	54
28	Identification of Casein Phosphopeptides Released after Simulated Digestion of Milk-Based Infant Formulas. Journal of Agricultural and Food Chemistry, 2005, 53, 3426-3433.	2.4	54
29	Review: Determination of Vitamin D in Dairy Products by High Performance Liquid Chromatography. Food Science and Technology International, 2005, 11, 451-462.	1.1	53
30	Whole blood selenium content in pregnant women. Science of the Total Environment, 1999, 227, 139-143.	3.9	51
31	Plant sterols from foods in inflammation and risk of cardiovascular disease: A real threat?. Food and Chemical Toxicology, 2014, 69, 140-149.	1.8	50
32	Influence of orange cultivar and mandarin postharvest storage on polyphenols, ascorbic acid and antioxidant activity during gastrointestinal digestion. Food Chemistry, 2017, 225, 114-124.	4.2	49
33	Caseinophosphopeptides exert partial and site-specific cytoprotection against H2O2-induced oxidative stress in Caco-2 cells. Food Chemistry, 2011, 129, 1495-1503.	4.2	48
34	Environmental cadmium, lead and nickel contamination: possible relationship between soil and vegetable content. Fresenius' Journal of Analytical Chemistry, 1991, 339, 654-657.	1.5	47
35	Methylmercury and inorganic mercury determination in fish by cold vapour generation atomic absorption spectrometry. Food Chemistry, 2000, 71, 529-533.	4.2	47
36	Bioaccessibility of calcium, iron and zinc from three legume samples. Molecular Nutrition and Food Research, 2003, 47, 438-441.	0.0	47

#	Article	IF	CITATIONS
37	Sterol stability in functional fruit beverages enriched with different plant sterol sources. Food Research International, 2012, 48, 265-270.	2.9	47
38	Effect of β-cryptoxanthin plus phytosterols on cardiovascular risk and bone turnover markers in post-menopausal women: A randomized crossover trial. Nutrition, Metabolism and Cardiovascular Diseases, 2014, 24, 1090-1096.	1.1	47
39	Calcium, iron, zinc and copper transport and uptake by Caco-2 cells in school meals: Influence of protein and mineral interactions. Food Chemistry, 2007, 100, 1085-1092.	4.2	46
40	Antioxidant effect derived from bioaccessible fractions of fruit beverages against H2O2-induced oxidative stress in Caco-2 cells. Food Chemistry, 2008, 106, 1180-1187.	4.2	46
41	Calcium bioavailability in human milk, cow milk and infant formulas—comparison between dialysis and solubility methods. Food Chemistry, 1999, 65, 353-357.	4.2	43
42	Iron bioavailability in iron-fortified cereal foods: The contribution of in vitro studies. Critical Reviews in Food Science and Nutrition, 2017, 57, 2028-2041.	5.4	43
43	Biosorption of green and black tea polyphenols into Saccharomyces cerevisiae improves their bioaccessibility. Journal of Functional Foods, 2015, 17, 11-21.	1.6	42
44	Anti-proliferative effect of main dietary phytosterols and β-cryptoxanthin alone or combined in human colon cancer Caco-2 cells through cytosolic Ca+2 – and oxidative stress-induced apoptosis. Journal of Functional Foods, 2015, 12, 282-293.	1.6	42
45	Stability of tocopherols in adapted milk-based infant formulas during storage. International Dairy Journal, 2004, 14, 1003-1011.	1.5	40
46	Antioxidant effect of casein phosphopeptides compared with fruit beverages supplemented with skimmed milk against H2O2-induced oxidative stress in Caco-2 cells. Food Research International, 2008, 41, 773-779.	2.9	40
47	Gangliosides and sialic acid effects upon newborn pathogenic bacteria adhesion: An in vitro study. Food Chemistry, 2013, 136, 726-734.	4.2	40
48	Protective effect of bioaccessible fractions of citrus fruit pulps against H 2 O 2 -induced oxidative stress in Caco-2 cells. Food Research International, 2018, 103, 335-344.	2.9	40
49	Casein phosphopeptides released by simulated gastrointestinal digestion of infant formulas and their potential role in mineral binding. International Dairy Journal, 2006, 16, 992-1000.	1.5	39
50	Speciation analysis of calcium, iron, and zinc in casein phosphopeptide fractions from toddler milk-based formula by anion exchange and reversed-phase high-performance liquid chromatography?mass spectrometry/flame atomic-absorption spectroscopy. Analytical and Bioanalytical Chemistry, 2005, 381, 1082-1088.	1.9	36
51	Apoptotic effect of a phytosterol-ingredient and its main phytosterol (\hat{I}^2 -sitosterol) in human cancer cell lines. International Journal of Food Sciences and Nutrition, 2019, 70, 323-334.	1.3	36
52	Antiproliferative Effect of Bioaccessible Fractions of Four Brassicaceae Microgreens on Human Colon Cancer Cells Linked to Their Phytochemical Composition. Antioxidants, 2020, 9, 368.	2.2	36
53	Dialyzability of iron, zinc, and copper of different types of infant formulas marketed in Spain. Biological Trace Element Research, 1998, 65, 7-17.	1.9	35
54	Comparison of spectrophotometric and HPLC methods for determining sialic acid in infant formulas. Food Chemistry, 2011, 127, 1905-1910.	4.2	35

#	Article	lF	CITATIONS
55	High-performance liquid chromatographic determination of tocopherols in infant formulas. Journal of Chromatography A, 2002, 947, 97-102.	1.8	34
56	Improved bioaccessibility and antioxidant capacity of olive leaf (Olea europaea L.) polyphenols through biosorption on Saccharomyces cerevisiae. Industrial Crops and Products, 2016, 84, 131-138.	2.5	34
57	Uptake and retention of calcium, iron, and zinc from raw legumes and the effect of cooking on lentils in Caco-2 cells. Nutrition Research, 2006, 26, 591-596.	1.3	32
58	An approach to As(III) and As(V) bioavailability studies with Caco-2 cells. Toxicology in Vitro, 2005, 19, 1071-1078.	1.1	30
59	Effects of phytosterol ester-enriched low-fat milk on serum lipoprotein profile in mildly hypercholesterolaemic patients are not related to dietary cholesterol or saturated fat intake. British Journal of Nutrition, 2010, 104, 1018-1025.	1.2	29
60	Evaluation of the cytotoxic effect of 7keto-stigmasterol and 7keto-cholesterol in human intestinal (Caco-2) cells. Food and Chemical Toxicology, 2012, 50, 3106-3113.	1.8	29
61	The impact of galactooligosaccharides on the bioaccessibility of sterols in a plant sterol-enriched beverage: adaptation of the harmonized INFOGEST digestion method. Food and Function, 2018, 9, 2080-2089.	2.1	29
62	Effect of Simulated Gastrointestinal Digestion on Sialic Acid and Gangliosides Present in Human Milk and Infant Formulas. Journal of Agricultural and Food Chemistry, 2011, 59, 5755-5762.	2.4	28
63	Availability of iron from milk-based formulas and fruit juices containing milk and cereals estimated by in vitro methods (solubility, dialysability) and uptake and transport by Caco-2 cells. Food Chemistry, 2007, 102, 1296-1303.	4.2	27
64	Plant Sterols and Antioxidant Parameters in Enriched Beverages: Storage Stability. Journal of Agricultural and Food Chemistry, 2012, 60, 4725-4734.	2.4	27
65	Plant sterol oxides in functional beverages: Influence of matrix and storage. Food Chemistry, 2015, 173, 881-889.	4.2	27
66	Oral intake of cadmium, cobalt, copper, iron, lead, nickel, manganese and zinc in the University student's diet. Molecular Nutrition and Food Research, 1993, 37, 241-245.	0.0	26
67	Calcium dialysability as an estimation of bioavailability in human milk, cow milk and infant formulas. Food Chemistry, 1999, 64, 403-409.	4.2	26
68	Milk versus caseinophosphopeptides added to fruit beverage: Resistance and release from simulated gastrointestinal digestion. Peptides, 2010, 31, 555-561.	1.2	26
69	Identification of casein phosphopeptides after simulated gastrointestinal digestion by tandem mass spectrometry. European Food Research and Technology, 2006, 222, 48-53.	1.6	25
70	Cytotoxic effect of As(III) in Caco-2 cells and evaluation of its human intestinal permeability. Toxicology in Vitro, 2006, 20, 658-663.	1.1	24
71	As2O3-induced oxidative stress and cycle progression in a human intestinal epithelial cell line (Caco-2). Toxicology in Vitro, 2008, 22, 444-449.	1.1	24
72	Effect of cooking and legume species upon calcium, iron and zinc uptake by Caco-2 cells. Journal of Trace Elements in Medicine and Biology, 2006, 20, 115-120.	1.5	23

#	Article	IF	CITATIONS
73	Isocratic high-performance liquid chromatographic determination of tryptophan in infant formulas. Journal of Chromatography A, 1996, 721, 83-88.	1.8	21

Bioavailability of zinc from infant foods by in vitro methods (solubility, dialyzability and uptake and) Tj ETQq000 rgBT /Overlock 10 Tf 50

75	Direct determination of lead in human milk by electrothermal atomic absorption spectrometry. Food Chemistry, 1999, 64, 111-113.	4.2	20
76	Iron Bioavailability in Fortified Fruit Beverages Using Ferritin Synthesis by Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2008, 56, 8699-8703.	2.4	20
77	Addition of milk or caseinophosphopeptides to fruit beverages to improve iron bioavailability?. Food Chemistry, 2010, 119, 141-148.	4.2	20
78	Simultaneous quantification of serum phytosterols and cholesterol precursors using a simple gas chromatographic method. European Journal of Lipid Science and Technology, 2012, 114, 520-526.	1.0	20
79	Relative expression of cholesterol transport-related proteins and inflammation markers through the induction of 7-ketosterol-mediated stress in Caco-2 cells. Food and Chemical Toxicology, 2013, 56, 247-253.	1.8	20
80	Sterol bioaccessibility in a plant sterol-enriched beverage using the INFOGEST digestion method: Influence of gastric lipase, bile salts and cholesterol esterase. Food Chemistry, 2022, 382, 132305.	4.2	20
81	Evaluation of Antimony, Cadmium and Lead Levels in Vegetables, Drinking and Raw Water from Different Agricultural Areas. International Journal of Environmental Analytical Chemistry, 1990, 38, 65-73.	1.8	19
82	Ferritin synthesis by Caco-2 cells as an indicator of iron bioavailability: Application to milk-based infant formulas. Food Chemistry, 2007, 102, 925-931.	4.2	19
83	Safe intake of a plant sterol-enriched beverage with milk fat globule membrane: Bioaccessibility of sterol oxides during storage. Journal of Food Composition and Analysis, 2018, 68, 111-117.	1.9	19
84	Selenium contents of human milk and infant formulas in Spain. Science of the Total Environment, 1999, 228, 185-192.	3.9	18
85	Selenium, Copper, and Zinc Indices of Nutritional Status : Influence of Sex and Season on Reference Values. Biological Trace Element Research, 2000, 73, 77-83.	1.9	18
86	Impact of Fruit Beverage Consumption on the Antioxidant Status in Healthy Women. Annals of Nutrition and Metabolism, 2009, 54, 35-42.	1.0	18
87	Sialic acid (N-acetyl and N-glycolylneuraminic acid) and ganglioside in whey protein concentrates and infant formulae. International Dairy Journal, 2011, 21, 887-895.	1.5	18
88	Protective effect of antioxidants contained in milk-based fruit beverages against sterol oxidation products. Journal of Functional Foods, 2017, 30, 81-89.	1.6	18
89	Anti-Inflammatory and Cytoprotective Effect of Plant Sterol and Galactooligosaccharides-Enriched Beverages in Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2020, 68, 1862-1870.	2.4	18
90	Effect of proteins, phytates, ascorbic acid and citric acid on dialysability of calcium, iron, zinc and copper in soy-based infant formulas. Molecular Nutrition and Food Research, 2000, 44, 114-117.	0.0	17

#	Article	IF	CITATIONS
91	Antiproliferative effect of plant sterols at colonic concentrations on Caco-2 cells. Journal of Functional Foods, 2017, 39, 84-90.	1.6	17
92	A positive impact on the serum lipid profile and cytokines after the consumption of a plant sterol-enriched beverage with a milk fat globule membrane: a clinical study. Food and Function, 2018, 9, 5209-5219.	2.1	17
93	Current methodologies for phytosterol analysis in foods. Microchemical Journal, 2021, 168, 106377.	2.3	17
94	HPLC Method for Cyst(e)ine and Methionine in Infant Formulas. Journal of Food Science, 1996, 61, 1132-1136.	1.5	16
95	7keto-stigmasterol and 7keto-cholesterol induce differential proteome changes to intestinal epitelial (Caco-2) cells. Food and Chemical Toxicology, 2015, 84, 29-36.	1.8	16
96	Effect of a Milk-Based Fruit Beverage Enriched with Plant Sterols and/or Galactooligosaccharides in a Murine Chronic Colitis Model. Foods, 2019, 8, 114.	1.9	16
97	Optimization of Selenium Determination in Human Milk and Whole Blood by Flow Injection Hydride Atomic Absorption Spectrometry. Journal of AOAC INTERNATIONAL, 1998, 81, 457-461.	0.7	15
98	Purified Glycosaminoglycans from Cooked Haddock May Enhance Fe Uptake Via Endocytosis in a Cacoâ€2 Cell Culture Model. Journal of Food Science, 2009, 74, H168-73.	1.5	15
99	Effects of Plant Sterols or β-Cryptoxanthin at Physiological Serum Concentrations on Suicidal Erythrocyte Death. Journal of Agricultural and Food Chemistry, 2018, 66, 1157-1166.	2.4	15
100	Antiproliferative activity of green, black tea and olive leaves polyphenols subjected to biosorption and in vitro gastrointestinal digestion in Caco-2 cells. Food Research International, 2020, 136, 109317.	2.9	15
101	Amino Acid Contents of Infant Formulas. Journal of Food Composition and Analysis, 1999, 12, 137-146.	1.9	14
102	Liquid chromatographic determination of Vitamin D3 in infant formulas and fortified milk. Analytica Chimica Acta, 2005, 543, 58-63.	2.6	14
103	In vitro bioavailability of iron and calcium in cereals and derivatives: A review. Food Reviews International, 2018, 34, 1-33.	4.3	14
104	Review: Effect of Some Components of Milk- and Soy-Based Infant Formulas on Mineral Bioavailability. Food Science and Technology International, 2001, 7, 191-198.	1.1	13
105	In Vitro Dialyzability of Zinc from Different Salts Used in the Supplementation of Infant Formulas. Biological Trace Element Research, 2000, 75, 11-19.	1.9	12
106	Lactoferrin and Its Possible Role in Iron Enrichment of Infant Formulas. Food Science and Technology International, 2001, 7, 97-103.	1.1	12
107	Speciation of bioaccessible (heme, ferrous and ferric) iron from school menus. European Food Research and Technology, 2005, 221, 768-773.	1.6	12
108	Effect of lactoferrin addition on the dialysability of iron from infant formulas. Journal of Trace Elements in Medicine and Biology, 2003, 17, 139-142.	1.5	11

#	Article	IF	CITATIONS
109	Calcium, iron and zinc uptakes by Caco-2 cells from white beans and effect of cooking. International Journal of Food Sciences and Nutrition, 2006, 57, 190-197.	1.3	11
110	Effect of caseinophosphopeptides added to fruit beverages upon ferritin synthesis in Caco-2 cells. Food Chemistry, 2010, 122, 92-97.	4.2	11
111	Effect of plant sterol and galactooligosaccharides enriched beverages on oxidative stress and longevity in Caenorhabditis elegans. Journal of Functional Foods, 2020, 65, 103747.	1.6	11
112	<i>In vitro</i> bioaccessibility of iron and zinc in fortified fruit beverages. International Journal of Food Science and Technology, 2009, 44, 1088-1092.	1.3	10
113	Does the addition of caseinophosphopeptides or milk improve zinc in vitro bioavailability in fruit beverages?. Food Research International, 2009, 42, 1475-1482.	2.9	10
114	Stability of fatty acids and tocopherols during cold storage of human milk. International Dairy Journal, 2012, 27, 22-26.	1.5	10
115	Effect of Caseinophosphopeptides from α _s - and β-Casein on Iron Bioavailability in HuH7 Cells. Journal of Agricultural and Food Chemistry, 2015, 63, 6757-6763.	2.4	10
116	Impact of high-pressure processing on the stability and bioaccessibility of bioactive compounds in Clementine mandarin juice and its cytoprotective effect on Caco-2 cells. Food and Function, 2020, 11, 8951-8962.	2.1	10
117	Polyphenolic profile and antiproliferative activity of bioaccessible fractions of zinc-fortified fruit beverages in human colon cancer cell lines. Nutricion Hospitalaria, 2010, 25, 561-71.	0.2	10
118	Determination of Cd, Co, Cu, Fe, Pb, Mn, Ni and Zn in diets: Development of a method. Molecular Nutrition and Food Research, 1991, 35, 683-687.	0.0	9
119	In vitro interactions between calcium, zinc, copper and iron in milk- and soy-based infant formulas / Interacciones in vitro entre calcio, cinc, cobre e hierro en formulas de base láctea y de soja para lactantes. Food Science and Technology International, 2000, 6, 25-31.	1.1	9
120	Identification of Novel Phosphopeptides After Simulated Digestion of αs2-casein by Tandem Mass Spectrometry. Food Science and Technology International, 2006, 12, 531-537.	1.1	9
121	Identification of Casein Phosphopeptides in β-casein and Commercial Hydrolysed Casein by Mass Spectrometry. Food Science and Technology International, 2006, 12, 379-384.	1.1	9
122	Physiological concentrations of phytosterols enhance the apoptotic effects of 5-fluorouracil in colon cancer cells. Journal of Functional Foods, 2018, 49, 52-60.	1.6	9
123	DETERMINATION OF CHOLESTEROL IN HUMAN MILK: AN ALTERNATIVE TO CHROMATOGRAPHIC METHODS. Nutricion Hospitalaria, 2015, 32, 1535-40.	0.2	9
124	Direct determination of calcium, magnesium, sodium, potassium and iron in infant formulas by atomic spectroscopy. Comparison with dry and wet digestions methods. Molecular Nutrition and Food Research, 1995, 39, 497-504.	0.0	8
125	Selenium and glutathione peroxidase reference values in whole blood and plasma of a reference population living in Valencia, Spain. Journal of Trace Elements in Medicine and Biology, 1996, 10, 223-8.	1.5	8
126	Mineral and/or milk supplementation of fruit beverages helps in the prevention of H2O2-induced oxidative stress in Caco-2 cells. Nutricion Hospitalaria, 2011, 26, 614-21.	0.2	8

#	Article	IF	CITATIONS
127	Selenium content of infant formulas and estimation of the intake of bottle fed infants. Molecular Nutrition and Food Research, 1995, 39, 237-240.	0.0	7
128	Calcium, magnesium, sodium, potassium and iron content of infant formulas and estimated daily intakes. Journal of Trace Elements in Medicine and Biology, 1996, 10, 25-30.	1.5	7
129	Microdetermination of phosphorus from infant formulas, casein and casein phosphopeptides. European Food Research and Technology, 2004, 219, 639-642.	1.6	7
130	Elderly gastrointestinal conditions increase sterol bioaccessibility in a plant sterol-enriched beverage: adaptation of the INFOGEST method. Food and Function, 2022, , .	2.1	7
131	Effectiveness of microwave based digestion procedures for the demineralization of human milk and infant formulas prior to fluorometric determination of selenium. Molecular Nutrition and Food Research, 1996, 40, 92-95.	0.0	6
132	Hypercholesterolemic patients have higher eryptosis and erythrocyte adhesion to human endothelium independently of statin therapy. International Journal of Clinical Practice, 2021, 75, e14771.	0.8	6
133	Antioxidant capacity of infant fruit beverages: influence of storage and in vitro gastrointestinal digestion. Nutricion Hospitalaria, 2008, 23, 547-53.	0.2	6
134	Determination of cobalt in foods by atomic absorption and inductively coupled plasma spectrometry (Short communication). Molecular Nutrition and Food Research, 1988, 32, 409-411.	0.0	5
135	Lead, cadmium and chromium content of edible vegetables grown in three different agricultural areas. Food Additives and Contaminants, 1990, 7, S22-S25.	2.0	5
136	Impact of processing on mineral bioaccessibility/bioavailability. , 2019, , 209-239.		5
137	Review: Effect of Some Components of Milk- and Soy-Based Infant Formulas on Mineral Bioavailability. Food Science and Technology International, 2001, 7, 191-198.	1.1	5
138	GFAAS determination of selenium in infant formulas using a microwave digestion method. Molecular Nutrition and Food Research, 1994, 38, 382-385.	0.0	4
139	A DPCSV method for the determination of nickel in infant formulas. Food Chemistry, 1994, 49, 427-430.	4.2	4
140	Effects of different infant formula components on calcium dialysability. European Food Research and Technology, 1999, 209, 93-96.	1.6	4
141	Effect of Enzyme Amounts Used in Gastrointestinal Digestion Upon Solubility and Caco-2 Cell Uptake Assays of Minerals from Infant Formulas. Food Science and Technology International, 2005, 11, 425-431.	1.1	4
142	Antiproliferative effects of bioaccessible fractions of honeys from Sicilian black honeybee (<i>Apis) Tj ETQq0 0 0 and Technology, 2022, 57, 2636-2645.</i>	rgBT /Over 1.3	lock 10 Tf 50 4
143	Evaluation of the Cytotoxicity of Cholesterol Oxides in Human Colon Cancer Caco-2 Cells. Universal Journal of Food and Nutrition Science, 2014, 2, 27-32.	0.2	4
144	Atomic Absorption Spectrophotometric Determination of Cobalt in Foods. Journal of the Association	0.2	3

of Official Analytical Chemists, 1985, 68, 511-513.

#	Article	IF	CITATIONS
145	Cobalt content of foods and diets in a Spanish population. Molecular Nutrition and Food Research, 1986, 30, 565-567.	0.0	3
146	Relationship between cobalt, copper and zinc content of soils and vegetables. Molecular Nutrition and Food Research, 1992, 36, 451-460.	0.0	3
147	Mathematic predictive models for calculating copper, iron and zinc dialysability in infant formulas. European Food Research and Technology, 2001, 212, 608-612.	1.6	3
148	Development of Functional Beverages: The Case of Plant Sterol-Enriched Milk-Based Fruit Beverages. , 2019, , 285-312.		3
149	DPP Determination of Trace Level of As(III) and Total Inorganic Arsenic in Drinking Waters. International Journal of Environmental Analytical Chemistry, 1989, 37, 125-137.	1.8	2
150	Determination of Antimony in drinking waters by an inexpensive, reproducible hydride generator for atomic spectroscopy. Molecular Nutrition and Food Research, 1991, 35, 13-19.	0.0	2
151	Direct determination of lead in cola beverages by electrothermal atomic absorption spectrophotometry. Molecular Nutrition and Food Research, 1992, 36, 202-204.	0.0	1
152	Vitamin E as an IgE inhibitor: stability during cold storage of human milk. Proceedings of the Nutrition Society, 2008, 67, .	0.4	1
153	Evaluation of methylmercury cytotoxicity at intestinal level. Toxicology Letters, 2006, 164, S162.	0.4	0
154	Cytokines profiles in intestinal epithelial (Caco-2) cells exposed to 7-ketostigmasterol or 7-ketocholesterol. Proceedings of the Nutrition Society, 2013, 72, .	0.4	0
155	Dialysability of Calcium, Iron, and Zinc in Beans, Chick Peas, and Lentils. , 2002, , 306-307.		0
156	Bioavailability of arsenic species in food. Arsenic in the Environment, 2008, , 319-325.	0.0	0
157	Cytotoxic Effect of Cholesterol Metabolites on Human Colonic Tumor (Caco-2) and Non-Tumor (CCD-18Co) Cells and Their Potential Implication in Colorectal Carcinogenesis. Proceedings (mdpi), 2020, 70, .	0.2	0