Conrad Bertrand Tabi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/720475/conrad-bertrand-tabi-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

106 870 17 21 h-index g-index citations papers 116 4.96 1,103 3.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
106	On stochastic response of fractional-order generalized birhythmic van der Pol oscillator subjected to delayed feedback displacement and Gaussian white noise excitation. <i>Chaos, Solitons and Fractals</i> , 2022 , 157, 111936	9.3	O
105	Stability of nonparaxial gap-soliton bullets in waveguide gratings. <i>Chaos, Solitons and Fractals</i> , 2022 , 158, 112034	9.3	O
104	(2+1)-dimensional unstable matter waves in self-interacting pseudospin-1/2 BECs under combined Rashba and Dresselhaus spin-orbit couplings. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2022 , 442, 128192	2.3	O
103	Dynamics of moving cavity solitons in two-level laser system from symmetric gaussian input: vectorial cubic-quintic complex Ginzburg Landau equation. <i>Applied Physics B: Lasers and Optics</i> , 2021 , 127, 1	1.9	О
102	Higher-order dispersion and nonlinear effects of optical fibers under septic self-steepening and self-frequency shift. <i>Physical Review E</i> , 2021 , 104, 044208	2.4	3
101	Excitons dynamic in a three-stranded (alpha)-helix protein chains with diagonal and off-diagonal couplings: effects of strong long-range interactions. <i>European Physical Journal Plus</i> , 2021 , 136, 1	3.1	2
100	Physical, linear and nonlinear optical properties of amorphous Se90-xTe10Mx (MIEIZn, In, Pb, xIEID, 5) chalcogenide thin films by electron-beam deposition. <i>Journal of Non-Crystalline Solids</i> , 2021 , 557, 120	1 <i>6</i> 46	5
99	Modulation instability in helicoidal spin-orbit coupled open Bose-Einstein condensates. <i>Physical Review E</i> , 2021 , 103, 052206	2.4	1
98	Effects of the septic nonlinearity and the initial value of the radius of orbital angular momentum beams on data transmission in optical fibers using the cubic-quintic-septic complex Ginzburg-Landau equation in presence of higher-order dispersions. <i>Chaos, Solitons and Fractals</i> ,	9.3	3
97	Chaos break and synchrony enrichment within Hindmarsh Rose-type memristive neural models. Nonlinear Dynamics, 2021, 105, 785-795	5	2
96	Pattern formation in the FitzhughNagumo neuron with diffusion relaxation. <i>Chaos, Solitons and Fractals</i> , 2021 , 147, 110974	9.3	O
95	Fractional propertiesleffects on a hybrid energy harvesting system dynamics. <i>Meccanica</i> , 2021 , 56, 2451	- <u>2.4</u> 69	1
94	Diffusion effects in nonlinear dynamics of hepatitis B virus. <i>Physica Scripta</i> , 2021 , 96, 105217	2.6	
93	Stochastic dynamics of the FitzHugh-Nagumo neuron model through a modified Van der Pol equation with fractional-order term and Gaussian white noise excitation. <i>Discrete and Continuous Dynamical Systems - Series S</i> , 2021 , 14, 2229	2.8	0
92	Fractional-Order Model for Myxomatosis Transmission Dynamics: Significance of Contact, Vector Control and Culling. <i>SIAM Journal on Applied Mathematics</i> , 2021 , 81, 641-665	1.8	1
91	Fractional blood flow in rotating nanofluid with different shapes nanoparticles in the influence of activation energy and thermal radiation. <i>Chaos</i> , 2021 , 31, 093109	3.3	0
90	Long-range modulated wave patterns in certain nonlinear saturation alpha-helical proteins. <i>European Physical Journal Plus</i> , 2021 , 136, 1	3.1	1

(2020-2021)

Generation of matter waves in Bose-Bose mixtures with helicoidal spin-orbit coupling. <i>Physical Review A</i> , 2021 , 104,	2.6	1
Dynamics and pattern formation of a diffusive predator⊞prey model in the subdiffusive regime in presence of toxicity. <i>Chaos, Solitons and Fractals,</i> 2021 , 151, 111238	9.3	O
Base pair opening in a damped helicoidal Joyeux-Buyukdagli model of DNA in an external force field. <i>Physical Review E</i> , 2020 , 102, 062402	2.4	9
Modulational instability of coupled waves in electronegative plasmas. <i>Physica Scripta</i> , 2020 , 95, 075211	2.6	1
Dynamics of a non-smooth type hybrid energy harvester with nonlinear magnetic coupling. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2020 , 90, 105364	3.7	4
Unstable cardiac multi-spiral waves in a FitzHughNagumo soliton model under magnetic flow effect. <i>Nonlinear Dynamics</i> , 2020 , 100, 3799-3814	5	5
Vector dissipative light bullets in optical laser beam. <i>Applied Physics B: Lasers and Optics</i> , 2020 , 126, 1	1.9	2
Long-range memory effects in a magnetized Hindmarsh-Rose neural network. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2020 , 84, 105208	3.7	6
Modulational instability of gap solitons in single-walled carbon nanotube lattices. <i>Wave Motion</i> , 2020 , 94, 102511	1.8	
Modulational instability in nonlinear doped optical fiber induced by the cubicquinticq	1.7	6
Few-cycle optical pulses in negative index materials with dispersive permittivity and permeability. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A331	1.7	3
From African Bam-tamIto nonlinear optics [Invited]. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2020 , 37, A346	1.7	2
Transport and diffusion of Brownian particles in a tilted deformable potential. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2020 , 541, 123284	3.3	1
Unstable cAMP wave patterns during aggregation of Dictyostelium discoideum cells. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126133	2.3	1
Generalized synchronization of regulate seizures dynamics in partial epilepsy with fractional-order derivatives. <i>Chaos, Solitons and Fractals,</i> 2020 , 132, 109553	9.3	5
Magnetic field effect on a fractionalized blood flow model in the presence of magnetic particles and thermal radiations. <i>Chaos, Solitons and Fractals</i> , 2020 , 131, 109540	9.3	5
Modulation instability in nonlinear metamaterials modeled by a cubic-quintic complex Ginzburg-Landau equation beyond the slowly varying envelope approximation. <i>Physical Review E</i> , 2020 , 102, 042207	2.4	5
Hopf bifurcations on invariant manifolds of a modified FitzhughNagumo model. <i>Nonlinear Dynamics</i> , 2020 , 102, 311-327	5	1
	Popularics and pattern formation of a diffusive predatoriliprey model in the subdiffusive regime in presence of toxicity. Chaos, Solitons and Fractals, 2021, 151, 111238 Base pair opening in a damped helicoidal Joyeux-Buyukdagli model of DNA in an external force field. Physical Review E, 2020, 102, 062402 Modulational instability of coupled waves in electronegative plasmas. Physica Scripta, 2020, 95, 075211 Dynamics of a non-smooth type hybrid energy harvester with nonlinear magnetic coupling. Communications in Nonlinear Science and Numerical Simulation, 2020, 90, 105364 Unstable cardiac multi-spiral waves in a FitzHughBiagumo soliton model under magnetic flow effect. Nonlinear Dynamics, 2020, 100, 3799-3814 Vector dissipative light bullets in optical laser beam. Applied Physics B: Lasers and Optics, 2020, 126, 1 Long-range memory effects in a magnetized Hindmarsh-Rose neural network. Communications in Nonlinear Science and Numerical Simulation, 2020, 84, 105208 Modulational instability of gap solitons in single-walled carbon nanotube lattices. Wave Motion, 2020, 94, 102511 Modulational instability in nonlinear doped optical fiber induced by the cubicifuintidiseptic complex Ginzburglandiau equation with higher-order dispersions. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A214 Few-cycle optical pulses in negative index materials with dispersive permittivity and permeability. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A314 From African Bam-tamtlo nonlinear optics [Invited]. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A331 Transport and diffusion of Brownian particles in a tilted deformable potential. Physica A: Statistical Mechanics and Its Applications, 2020, 541, 123284 Unstable CAMP wave patterns during aggregation of Dictyostelium discoideum cells. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 334, 126133 Generalized synchronization of regulate seizures dynamics in partial epilepsy w	Dynamics and pattern formation of a diffusive predatoriëprey model in the subdiffusive regime in presence of toxicity. Chaos, Solitons and Fractals, 2021, 151, 111238 Base pair opening in a damped helicoidal Joyeux-Buyukdagli model of DNA in an external force field. Physical Review E, 2020, 102, 062402 Modulational instability of coupled waves in electronegative plasmas. Physica Scripta, 2020, 95, 075211 2.6 Dynamics of a non-smooth type hybrid energy harvester with nonlinear magnetic coupling. Communications in Nonlinear Science and Numerical Simulation, 2020, 90, 105364 Unstable cardiac multi-spiral waves in a FitzHugh®lagumo soliton model under magnetic flow effect. Nonlinear Dynamics, 2020, 100, 3799-3814 Vector dissipative light bullets in optical laser beam. Applied Physics B: Lasers and Optics, 2020, 126, 1 Long-range memory effects in a magnetized Hindmarsh-Rose neural network. Communications in Nonlinear Science and Numerical Simulation, 2020, 84, 105208 Modulational instability of gap solitons in single-walled carbon nanotube lattices. Wave Motion, 2020, 94, 102511 Modulational instability in nonlinear doped optical fiber induced by the cubicituintic@eptic complex GinzburgLandau equation with higher-order dispersions. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A214 Few-cycle optical pulses in negative index materials with dispersive permittivity and permeability. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A214 Few-cycle optical pulses in negative index materials with dispersive permittivity and permeability. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A214 Few-cycle optical pulses in negative index materials with dispersive permittivity and permeability. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A214 Few-cycle optical pulses in negative index materials with dispersive permittivity and permeability. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A214

71	Modulational instability in weak nonlocal nonlinear media with competing Kerr and non-Kerr nonlinearities. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2020 , 80, 104993	3.7	7
70	Orbital stability and homoclinic bifurcation in a parametrized deformable double-well potential. <i>Chaos, Solitons and Fractals</i> , 2020 , 130, 109411	9.3	2
69	Base pairs opening and bubble transport in damped DNA dynamics with transport memory effects. <i>Chaos</i> , 2019 , 29, 093103	3.3	6
68	Robust propagation of optical vortex beams, necklace-ring solitons, soliton clusters and uniform-ring beams generated in the frame of the higher-order (3 + 1)-dimensional cubicquintiquintiquin	2.6	4
67	Unstable discrete modes in Hindmarsh R ose neural networks under magnetic flow effect. <i>Chaos, Solitons and Fractals,</i> 2019 , 123, 116-123	9.3	12
66	On the chaotic pole of attraction for Hindmarsh-Rose neuron dynamics with external current input. <i>Chaos</i> , 2019 , 29, 023104	3.3	10
65	Oscillating two-dimensional Ca2+ waves in cell networks with bidirectional paracrine signaling. Waves in Random and Complex Media, 2019 , 1-23	1.9	1
64	Low relativistic effects on the modulational instability of rogue waves in electronegative plasmas. Journal of Theoretical and Applied Physics, 2019, 13, 237-249	1.4	10
63	Elimination of spiral waves in a two-dimensional HindmarshRose neural network under long-range interaction effect and frequency excitation. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2019 , 533, 122037	3.3	4
62	Firing and synchronization modes in neural network under magnetic stimulation. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2019 , 72, 432-440	3.7	20
61	Long-range energy modes in Ehelix lattices with inter-spine coupling. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2019 , 514, 298-310	3.3	5
60	Dissipative Mayer waves in fluid-filled viscoelastic tubes. <i>Chaos, Solitons and Fractals</i> , 2018 , 109, 170-18	B 3 .3	4
59	Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects. Journal of Magnetism and Magnetic Materials, 2018, 456, 38-45	2.8	18
58	Electronegative nonlinear oscillating modes in plasmas. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2018 , 55, 326-337	3.7	18
57	Fluctuations of polarization induce multisolitons in (alpha)-helix protein. <i>Nonlinear Dynamics</i> , 2018 , 91, 679-686	5	9
56	Electronegative (3+1)-dimensional modulated excitations in plasmas. <i>Physica B: Condensed Matter</i> , 2018 , 545, 370-376	2.8	6
55	Dynamical analysis of the FitzHughNagumo oscillations through a modified Van der Pol equation with fractional-order derivative term. <i>International Journal of Non-Linear Mechanics</i> , 2018 , 105, 173-178	2.8	17
54	Three excitons states in nonlinear saturation (alpha) -helix protein. European Physical Journal Plus, 2018, 133, 1	3.1	3

(2015-2018)

53	Stochastic electrical behavior of Splina liquid chlorophyll drink. <i>Indian Journal of Science and Technology</i> , 2018 , 11, 1-13	1	1	
52	Stochastic electrical behavior of Splina liquid chlorophyll drink. <i>Indian Journal of Science and Technology</i> , 2018 , 11, 1-14	1	1	
51	Neuronal firing and DNA dynamics in a neural network. <i>Journal of Physics Communications</i> , 2018 , 2, 125	50 0.4	6	
50	Fractional unstable patterns of energy in Belix proteins with long-range interactions. <i>Chaos, Solitons and Fractals,</i> 2018 , 116, 386-391	9.3	11	
49	Spatial synchrony in fractional order metapopulation cholera transmission. <i>Chaos, Solitons and Fractals</i> , 2018 , 117, 37-49	9.3	6	
48	Long-range patterns in Hindmarsh R ose networks. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2017 , 43, 211-219	3.7	30	
47	Frequency mode excitations in two-dimensional Hindmarsh Rose neural networks. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2017 , 474, 186-198	3.3	16	
46	Nonlinear excitations of blood flow in large vessels under thermal radiations and uniform magnetic field. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2017 , 49, 1-8	3.7	12	
45	Coupled energy patterns in zigzag molecular chains. Wave Motion, 2017, 72, 342-353	1.8	6	
44	Nonlinear coupled mode excitations in microtubules. <i>Chaos, Solitons and Fractals</i> , 2017 , 95, 187-194	9.3	9	
43	Synchronized nonlinear patterns in electrically coupled Hindmarsh R ose neural networks with long-range diffusive interactions. <i>Chaos, Solitons and Fractals,</i> 2017 , 104, 813-826	9.3	18	
42	Two-dimensional modulated ion-acoustic excitations in electronegative plasmas. <i>Physics of Plasmas</i> , 2017 , 24, 092114	2.1	14	
41	Modulational instability in a biexciton molecular chain with saturable nonlinearity effects. <i>International Journal of Modern Physics B</i> , 2016 , 30, 1550244	1.1		
40	Modulated charge patterns and noise effect in a twisted DNA model with solvent interaction. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2016 , 442, 498-509	3.3	14	
39	Discrete Polaron Solutions for Charge Transport in Helicoidal DNA Molecules. <i>Quantum Matter</i> , 2016 , 5, 139-146		2	
38	Bubble Formation in Helicoidal DNA Molecules 2016 , 06,		1	
37	Energy patterns in coupled Hhelix protein chains with diagonal and off-diagonal couplings. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 2016 , 380, 2374-2381	2.3	23	
36	Modulational instability and energy localization of twisted DNA with solvent interaction. International Journal of Modern Physics B, 2015 , 29, 1550049	1.1	2	

35	Long-range intercellular Ca2+ wave patterns. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2015 , 435, 1-14	3.3	14
34	Discrete impulses in ephaptically coupled nerve fibers. <i>Chaos</i> , 2015 , 25, 043118	3.3	24
33	Energy patterns in twist-opening models of DNA with solvent interactions. <i>Journal of Biological Physics</i> , 2015 , 41, 391-408	1.6	5
32	Discrete charge patterns in a Holstein-SSH DNA lattice. <i>International Journal of Quantum Chemistry</i> , 2015 , 115, 34-41	2.1	6
31	Effects of higher order nonlinearities on modulational instability in nonlinear oppositely directed coupler. <i>Journal of Modern Optics</i> , 2014 , 61, 1670-1678	1.1	30
30	Wave instability of intercellular Ca 2+ oscillations. <i>Europhysics Letters</i> , 2014 , 106, 18005	1.6	17
29	Nonlinear wave trains in three-strand Helical protein models. <i>European Physical Journal B</i> , 2013 , 86, 1	1.2	17
28	Wave patterns in⊞elix proteins with interspine coupling. <i>Physica Scripta</i> , 2013 , 87, 025801	2.6	11
27	Modulated pressure waves in large elastic tubes. <i>Chaos</i> , 2013 , 23, 033128	3.3	20
26	Nonlinear charge transport in the helicoidal DNA molecule. <i>Chaos</i> , 2012 , 22, 043110	3.3	26
25	Discrete energy transport in the perturbed Ablowitz-Ladik equation for Davydov model of Helix proteins. <i>European Physical Journal B</i> , 2012 , 85, 1	1.2	13
24	Coherent Modes and Parameter Selection in DNA Models with Finite Stacking Enthalpy. <i>Journal of Computational and Theoretical Nanoscience</i> , 2012 , 9, 97-101	0.3	4
23	Wave propagation of coupled modes in the DNA double helix. <i>Physica Scripta</i> , 2011 , 83, 035802	2.6	11
22	Protein-DNA Interaction: Effect of Helicity on Bubble Size. <i>Journal of Computational and Theoretical Nanoscience</i> , 2011 , 8, 2220-2226	0.3	2
21	Application of the (G'/G)-expansion method to nonlinear blood flow in large vessels. <i>Physica Scripta</i> , 2011 , 84, 029701	2.6	2
20	Intramolecular vibrations and noise effects on pattern formation in a molecular helix. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 375104	1.8	13
19	Application of the (G?/G)-expansion method to nonlinear blood flow in large vessels. <i>Physica Scripta</i> , 2011 , 83, 045803	2.6	7
18	Energy localization in an anharmonic twist-opening model of DNA dynamics. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 414107	1.8	7

LIST OF PUBLICATIONS

17	Modulational instability in the anharmonic Peyrard-Bishop model of DNA. <i>European Physical Journal B</i> , 2010 , 74, 151-158	1.2	27
16	Long-range interactions and wave patterns in a DNA model. <i>European Physical Journal E</i> , 2010 , 32, 327-3	3 2 .5	15
15	Two Possible Approaches in Peyrard-Bishop-Dauxois Model of DNA Dynamics. <i>Journal of Computational and Theoretical Nanoscience</i> , 2010 , 7, 1418-1424	0.3	3
14	Discrete instability in the DNA double helix. <i>Chaos</i> , 2009 , 19, 043101	3.3	20
13	Modulation Instability and Pattern Formation in Damped Molecular Systems. <i>Journal of Computational and Theoretical Nanoscience</i> , 2009 , 6, 583-592	0.3	4
12	LOCALIZED BREATHER-LIKE EXCITATIONS IN THE HELICOIDAL PEYRARD B ISHOP MODEL OF DNA. <i>International Journal of Biomathematics</i> , 2009 , 02, 405-417	1.8	3
11	Modulational instability and exact soliton solutions for a twist-opening model of DNA dynamics. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2009 , 373, 2476-2483	2.3	20
10	Modulational instability of charge transport in the Peyrard-Bishop-Holstein model. <i>Journal of Physics Condensed Matter</i> , 2009 , 21, 335101	1.8	13
9	Modulated Wave Packets in DNA and Impact of Viscosity. <i>Chinese Physics Letters</i> , 2009 , 26, 068703	1.8	21
8	Formation of localized structures in the Peyrard B ishop D auxois model. <i>Journal of Physics Condensed Matter</i> , 2008 , 20, 415104	1.8	19
7	Soliton excitation in the DNA double helix. <i>Physica Scripta</i> , 2008 , 77, 045002	2.6	21
6	Modulational Instability in DNA Model with Competing Short- and Long-Range Dispersive Interactions. <i>Journal of Bionanoscience</i> , 2008 , 2, 89-96		6
5	Wave propagation of nonlinear modes and formation of bubble in a two-component helicoidal lattice. <i>European Physical Journal D</i> , 2008 , 50, 307-316	1.3	20
4	Acoustic and Optical Soliton Excitations in the Peyrard-Bishop Model of DNA Dynamics with Alternating A-T and G-C Base Pairs. <i>Journal of Computational and Theoretical Nanoscience</i> , 2008 , 5, 2201	-2 <i>2</i> 09	6
3	Modulational Instability and Pattern Formation in DNA Dynamics with Viscosity. <i>Journal of Computational and Theoretical Nanoscience</i> , 2008 , 5, 647-654	0.3	14
2	Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity. <i>Mathematical Biosciences and Engineering</i> , 2008 , 5, 205-16	2.1	16
1	On a Laser (3+1)-Dimensional Vectorial Cubic-Quintic Complex Ginzburg-Landau Equation and Modulational Instability		2