
Sankara Narayanan T S N

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7204702/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Progress in Materials Science, 2014, 60, 1-71.	32.8	508
2	Electroless Ni–P composite coatings. Journal of Applied Electrochemistry, 2003, 33, 807-816.	2.9	339
3	Electroless Ni–B coatings: preparation and evaluation of hardness and wear resistance. Surface and Coatings Technology, 2005, 190, 115-121.	4.8	253
4	Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer's solution – Long term evaluation by EIS. Corrosion Science, 2011, 53, 645-654.	6.6	226
5	Effect of accelerators and stabilizers on the formation and characteristics of electroless Ni–P deposits. Materials Chemistry and Physics, 2006, 99, 117-126.	4.0	134
6	Corrosion behaviour of Ti–15Mo alloy for dental implant applications. Journal of Dentistry, 2008, 36, 500-507.	4.1	105
7	Electrodeposited Ni–B coatings: Formation and evaluation of hardness and wear resistance. Materials Chemistry and Physics, 2006, 99, 300-308.	4.0	104
8	Electroless Ni–Co–P ternary alloy deposits: preparation and characteristics. Surface and Coatings Technology, 2003, 172, 298-307.	4.8	97
9	Thermal oxidation of CP-Ti: Evaluation of characteristics and corrosion resistance as a function of treatment time. Materials Science and Engineering C, 2009, 29, 1942-1949.	7.3	76
10	Electroless Ni–Co–B ternary alloy deposits: preparation and characteristics. Surface and Coatings Technology, 2004, 179, 56-62.	4.8	64
11	Deposition of microarc oxidation–polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants. Thin Solid Films, 2014, 562, 561-567.	1.8	61
12	Influence of fluoride ion on the electrochemical behaviour of β-Ti alloy for dental implant application. Corrosion Science, 2010, 52, 1721-1727.	6.6	59
13	Fretting corrosion behaviour of thermally oxidized CP-Ti in Ringer's solution. Corrosion Science, 2010, 52, 711-721.	6.6	56
14	Deposition of strontium phosphate coatings on magnesium by hydrothermal treatment: Characteristics, corrosion resistance and bioactivity. Journal of Alloys and Compounds, 2018, 745, 725-743.	5.5	56
15	Evaluation of fretting corrosion behaviour of CP-Ti for orthopaedic implant applications. Tribology International, 2010, 43, 1245-1252.	5.9	53
16	Corrosion resistance of phosphate coatings obtained by cathodic electrochemical treatment: Role of anode–graphite versus steel. Progress in Organic Coatings, 2006, 55, 355-362.	3.9	51
17	Formation and characteristics of zinc phosphate coatings obtained by electrochemical treatment: Cathodic vs. anodic. Progress in Organic Coatings, 2009, 65, 229-236.	3.9	46
18	Effect of surface mechanical attrition treatment (SMAT) on boronizing of EN8 steel. Surface and Coatings Technology, 2012, 213, 221-228.	4.8	43

#	Article	IF	CITATIONS
19	Evaluation of the corrosion resistance of phosphate coatings obtained by anodic electrochemical treatment. Progress in Organic Coatings, 2006, 57, 392-399.	3.9	29
20	Protecting electrochemical degradation of pure iron using zinc phosphate coating for biodegradable implant applications. New Journal of Chemistry, 2018, 42, 18458-18468.	2.8	18
21	Deposition of zinc–zinc phosphate composite coatings on aluminium by cathodic electrochemical treatment. Surface and Coatings Technology, 2014, 258, 539-548.	4.8	14
22	Fretting-corrosion mapping of CP-Ti in Ringer's solution. Wear, 2010, 268, 1537-1541.	3.1	13
23	Incorporation of ZrO 2 particles in the oxide layer formed on Mg by anodizing: Influence of electrolyte concentration and current modes. Journal of Colloid and Interface Science, 2016, 464, 36-47.	9.4	13
24	Characteristics of microarc oxidation coatings deposited on magnesium using alkaline and acidic electrolytes in a single stage as well as using dual electrolytes in two stages. Journal of Alloys and Compounds, 2016, 687, 720-732.	5.5	10
25	Spectrophotometric analysis to monitor the corrosion behaviour of magnesium during immersion corrosion testing: A suitable alternative to pH measurement?. Corrosion Science, 2014, 89, 338-342.	6.6	4
26	Nanoscale modification of magnesium with highly textural lamellar nanosheets towards increasing the corrosion resistance and bioactivity. Surface and Coatings Technology, 2016, 304, 425-437.	4.8	4