Benjamin J Frisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7204366/publications.pdf

Version: 2024-02-01

516215 525886 1,069 36 16 27 citations g-index h-index papers 39 39 39 1839 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanoparticleâ€Mediated Delivery of Micheliolide Analogs to Eliminate Leukemic Stem Cells in the Bone Marrow. Advanced Therapeutics, 2022, 5, 2100100.	1.6	3
2	Reduction of leukemic burden via boneâ€ŧargeted nanoparticle delivery of an inhibitor of Câ€chemokine (Câ€C motif) ligand 3 (CCL3) signaling. FASEB Journal, 2021, 35, e21402.	0.2	11
3	From the niche to malignant hematopoiesis and back: reciprocal interactions between leukemia and the bone marrow microenvironment. JBMR Plus, 2021, 5, e10516.	1.3	9
4	Hematopoietic Stem Cell Cultures and Assays. Methods in Molecular Biology, 2021, 2230, 467-477.	0.4	3
5	Targeted Radiation Evokes Catecholamine Production Triggering Systemic Inflammatory Responses. Blood, 2021, 138, 989-989.	0.6	3
6	Interleukin-1/Toll-like Receptor Inhibition Can Restore the Disrupted Bone Marrow Microenvironment in Mouse Model of Myelodysplastic Syndromes. Blood, 2021, 138, 1510-1510.	0.6	2
7	The hematopoietic stem cell niche: What's so special about bone?. Bone, 2019, 119, 8-12.	1.4	20
8	Acute and late effects of combined internal and external radiation exposures on the hematopoietic system. International Journal of Radiation Biology, 2019, 95, 1447-1461.	1.0	8
9	Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B. JCI Insight, 2019, 4, .	2.3	82
10	Local Irradiation Induces Systemic Inflammatory Response and Alteration of the Hematopoietic Stem Cell Niche. Blood, 2019, 134, 1213-1213.	0.6	2
11	Anticancer activity profiling of parthenolide analogs generated via P450-mediated chemoenzymatic synthesis. Bioorganic and Medicinal Chemistry, 2018, 26, 1365-1373.	1.4	32
12	The Chemokine CCL3 Regulates Myeloid Differentiation and Hematopoietic Stem Cell Numbers. Scientific Reports, 2018, 8, 14691.	1.6	33
13	EVI1 overexpression reprograms hematopoiesis via upregulation of Spi1 transcription. Nature Communications, 2018, 9, 4239.	5. 8	39
14	The Notch Ligand Jagged Regulates the Osteoblastic Lineage by Maintaining the Osteoprogenitor Pool. Journal of Bone and Mineral Research, 2017, 32, 1320-1331.	3.1	44
15	Aging of Hematopoietic Stem Cells Is Driven By Regional Specialization of Marrow Macrophages. Blood, 2017, 130, 95-95.	0.6	0
16	Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood, 2016, 127, 616-625.	0.6	80
17	CCL3 Regulates Normal Hematopoiesis but Is Not Essential for the Maintenance of a Long-Term Engrafting Hematopoietic Stem Cell. Blood, 2016, 128, 1482-1482.	0.6	O
18	Restoration of the Bone Marrow Microenvironment Improves Hematopoietic Function in a Murine Model of Myelodysplastic Syndrome. Blood, 2015, 126, 358-358.	0.6	0

#	Article	IF	CITATIONS
19	Osteocyte-Mediated Parathyroid Hormone (PTH) Signaling Regulates Hematopoietic Stem Cells Under Physiologic and Continuous PTH Exposure. Blood, 2015, 126, 1199-1199.	0.6	0
20	Hematopoietic Stem Cell Cultures and Assays. Methods in Molecular Biology, 2014, 1130, 315-324.	0.4	21
21	Osteoblasts as leukemia-initiating cells. BoneKEy Reports, 2014, 3, 572.	2.7	2
22	Microenvironmental Contribution to Dysfunctional Hematopoiesis in a Murine Model of Myelodysplastic Syndrome. Blood, 2014, 124, 4359-4359.	0.6	0
23	Modulation of Interaction of Human Osteoprogenitor Cells with Hematopoietic Stem and Progenitor Cells. Blood, 2014, 124, 2933-2933.	0.6	0
24	Prostaglandin E2 Increases Hematopoietic Stem Cell Survival and Accelerates Hematopoietic Recovery After Radiation Injury. Stem Cells, 2013, 31, 372-383.	1.4	95
25	Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood, 2012, 119, 2489-2499.	0.6	60
26	Osteoblastic N-cadherin is not required for microenvironmental support and regulation of hematopoietic stem and progenitor cells. Blood, 2012, 120, 303-313.	0.6	81
27	Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood, 2012, 119, 540-550.	0.6	185
28	Bone Marrow-Derived Matrix Metalloproteinase-9 Is Associated with Fibrous Adhesion Formation after Murine Flexor Tendon Injury. PLoS ONE, 2012, 7, e40602.	1.1	37
29	Functional Inhibition of Osteoblastic Cells in An In Vivo Mouse Model of Myeloid Leukemia. Blood, 2011, 118, 243-243.	0.6	3
30	Microenvironmental Changes In An In Vivo Model of Myeloid Leukemia Negatively Regulate Osteoblastic Cells Blood, 2010, 116, 1219-1219.	0.6	0
31	In vivo prostaglandin E2 treatment alters the bone marrow microenvironment and preferentially expands short-term hematopoietic stem cells. Blood, 2009, 114, 4054-4063.	0.6	73
32	Hematopoietic niche and bone meet. Current Opinion in Supportive and Palliative Care, 2008, 2, 211-217.	0.5	35
33	In Vivo Treatment with Prostaglandin E2 (PGE2) Selectively Expands Short-Term Hematopoietic Stem Cells Blood, 2007, 110, 1254-1254.	0.6	0
34	Parathyroid hormone stimulates expression of the Notch ligand Jagged1 in osteoblastic cells. Bone, 2006, 39, 485-493.	1.4	96
35	Prostaglandin E2 (PGE2) Regulates Osteoblastic Jagged1 and Expands Primitive Hematopoietic Cells In Vivo Blood, 2006, 108, 89-89.	0.6	3
36	Bone Marrow Microenvironment-On-Chip for Culture of Functional Hematopoietic Stem Cells. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	6