Benjamin J Frisch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7204366/publications.pdf Version: 2024-02-01

RENIAMIN | FRISCH

#	Article	IF	CITATIONS
1	Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood, 2012, 119, 540-550.	0.6	185
2	Parathyroid hormone stimulates expression of the Notch ligand Jagged1 in osteoblastic cells. Bone, 2006, 39, 485-493.	1.4	96
3	Prostaglandin E2 Increases Hematopoietic Stem Cell Survival and Accelerates Hematopoietic Recovery After Radiation Injury. Stem Cells, 2013, 31, 372-383.	1.4	95
4	Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B. JCI Insight, 2019, 4, .	2.3	82
5	Osteoblastic N-cadherin is not required for microenvironmental support and regulation of hematopoietic stem and progenitor cells. Blood, 2012, 120, 303-313.	0.6	81
6	Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood, 2016, 127, 616-625.	0.6	80
7	In vivo prostaglandin E2 treatment alters the bone marrow microenvironment and preferentially expands short-term hematopoietic stem cells. Blood, 2009, 114, 4054-4063.	0.6	73
8	Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood, 2012, 119, 2489-2499.	0.6	60
9	The Notch Ligand Jagged1 Regulates the Osteoblastic Lineage by Maintaining the Osteoprogenitor Pool. Journal of Bone and Mineral Research, 2017, 32, 1320-1331.	3.1	44
10	EVI1 overexpression reprograms hematopoiesis via upregulation of Spi1 transcription. Nature Communications, 2018, 9, 4239.	5.8	39
11	Bone Marrow-Derived Matrix Metalloproteinase-9 Is Associated with Fibrous Adhesion Formation after Murine Flexor Tendon Injury. PLoS ONE, 2012, 7, e40602.	1.1	37
12	Hematopoietic niche and bone meet. Current Opinion in Supportive and Palliative Care, 2008, 2, 211-217.	0.5	35
13	The Chemokine CCL3 Regulates Myeloid Differentiation and Hematopoietic Stem Cell Numbers. Scientific Reports, 2018, 8, 14691.	1.6	33
14	Anticancer activity profiling of parthenolide analogs generated via P450-mediated chemoenzymatic synthesis. Bioorganic and Medicinal Chemistry, 2018, 26, 1365-1373.	1.4	32
15	Hematopoietic Stem Cell Cultures and Assays. Methods in Molecular Biology, 2014, 1130, 315-324.	0.4	21
16	The hematopoietic stem cell niche: What's so special about bone?. Bone, 2019, 119, 8-12.	1.4	20
17	Reduction of leukemic burden via boneâ€ŧargeted nanoparticle delivery of an inhibitor of Câ€chemokine (C motif) ligand 3 (CCL3) signaling. FASEB Journal, 2021, 35, e21402.	0.2	11
18	From the niche to malignant hematopoiesis and back: reciprocal interactions between leukemia and the bone marrow microenvironment. JBMR Plus, 2021, 5, e10516.	1.3	9

Benjamin J Frisch

#	Article	IF	CITATIONS
19	Acute and late effects of combined internal and external radiation exposures on the hematopoietic system. International Journal of Radiation Biology, 2019, 95, 1447-1461.	1.0	8
20	Bone Marrow Microenvironment-On-Chip for Culture of Functional Hematopoietic Stem Cells. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	6
21	Prostaglandin E2 (PGE2) Regulates Osteoblastic Jagged1 and Expands Primitive Hematopoietic Cells In Vivo Blood, 2006, 108, 89-89.	0.6	3
22	Nanoparticleâ€Mediated Delivery of Micheliolide Analogs to Eliminate Leukemic Stem Cells in the Bone Marrow. Advanced Therapeutics, 2022, 5, 2100100.	1.6	3
23	Functional Inhibition of Osteoblastic Cells in An In Vivo Mouse Model of Myeloid Leukemia. Blood, 2011, 118, 243-243.	0.6	3
24	Hematopoietic Stem Cell Cultures and Assays. Methods in Molecular Biology, 2021, 2230, 467-477.	0.4	3
25	Targeted Radiation Evokes Catecholamine Production Triggering Systemic Inflammatory Responses. Blood, 2021, 138, 989-989.	0.6	3
26	Osteoblasts as leukemia-initiating cells. BoneKEy Reports, 2014, 3, 572.	2.7	2
27	Local Irradiation Induces Systemic Inflammatory Response and Alteration of the Hematopoietic Stem Cell Niche. Blood, 2019, 134, 1213-1213.	0.6	2
28	Interleukin-1/Toll-like Receptor Inhibition Can Restore the Disrupted Bone Marrow Microenvironment in Mouse Model of Myelodysplastic Syndromes. Blood, 2021, 138, 1510-1510.	0.6	2
29	In Vivo Treatment with Prostaglandin E2 (PGE2) Selectively Expands Short-Term Hematopoietic Stem Cells Blood, 2007, 110, 1254-1254.	0.6	0
30	Microenvironmental Changes In An In Vivo Model of Myeloid Leukemia Negatively Regulate Osteoblastic Cells Blood, 2010, 116, 1219-1219.	0.6	0
31	Microenvironmental Contribution to Dysfunctional Hematopoiesis in a Murine Model of Myelodysplastic Syndrome. Blood, 2014, 124, 4359-4359.	0.6	0
32	Modulation of Interaction of Human Osteoprogenitor Cells with Hematopoietic Stem and Progenitor Cells. Blood, 2014, 124, 2933-2933.	0.6	0
33	Restoration of the Bone Marrow Microenvironment Improves Hematopoietic Function in a Murine Model of Myelodysplastic Syndrome. Blood, 2015, 126, 358-358.	0.6	Ο
34	Osteocyte-Mediated Parathyroid Hormone (PTH) Signaling Regulates Hematopoietic Stem Cells Under Physiologic and Continuous PTH Exposure. Blood, 2015, 126, 1199-1199.	0.6	0
35	CCL3 Regulates Normal Hematopoiesis but Is Not Essential for the Maintenance of a Long-Term Engrafting Hematopoietic Stem Cell. Blood, 2016, 128, 1482-1482.	0.6	0
36	Aging of Hematopoietic Stem Cells Is Driven By Regional Specialization of Marrow Macrophages. Blood, 2017, 130, 95-95.	0.6	0