
Giuseppe Mannino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7203959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phytochemical profile and antioxidant properties of the edible and non-edible portions of black sapote (Diospyros digyna Jacq.). Food Chemistry, 2022, 380, 132137.	4.2	10

Modulation of Antioxidant Defense in Farmed Rainbow Trout (Oncorhynchus mykiss) Fed with a Diet Supplemented by the Waste Derived from the Supercritical Fluid Extraction of Basil (Ocimum) Tj ETQq0 0 0 rgBT / @værlock 1@4Tf 50 697 2

3	Preliminary Investigation of Biogenic Amines in Type I Sourdoughs Produced at Home and Bakery Level. Toxins, 2022, 14, 293.	1.5	4
4	Metabolomics-Based Profiling, Antioxidant Power, and Uropathogenic Bacterial Anti-Adhesion Activity of SP4TM, a Formulation with a High Content of Type-A Proanthocyanidins. Antioxidants, 2022, 11, 1234.	2.2	10
5	Can Agri-Food Waste Be a Sustainable Alternative in Aquaculture? A Bibliometric and Meta-Analytic Study on Growth Performance, Innate Immune System, and Antioxidant Defenses. Foods, 2022, 11, 1861.	1.9	15
6	Anthocyanins: Biosynthesis, Distribution, Ecological Role, and Use of Biostimulants to Increase Their Content in Plant Foods—A Review. Agriculture (Switzerland), 2021, 11, 212.	1.4	53
7	Bioactive Triterpenes of Protium heptaphyllum Gum Resin Extract Display Cholesterol-Lowering Potential. International Journal of Molecular Sciences, 2021, 22, 2664.	1.8	22
8	In Silico Identification of Small Molecules as New Cdc25 Inhibitors through the Correlation between Chemosensitivity and Protein Expression Pattern. International Journal of Molecular Sciences, 2021, 22, 3714.	1.8	12
9	Identification of biological targets through the correlation between cell line chemosensitivity and protein expression pattern. Drug Discovery Today, 2021, 26, 2431-2438.	3.2	1
10	A Biostimulant Based on Seaweed (Ascophyllum nodosum and Laminaria digitata) and Yeast Extracts Mitigates Water Stress Effects on Tomato (Solanum lycopersicum L.). Agriculture (Switzerland), 2021, 11, 557.	1.4	48
11	Clostridium cellulovorans Proteomic Responses to Butanol Stress. Frontiers in Microbiology, 2021, 12, 674639.	1.5	4
12	Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants, 2021, 10, 1229.	2.2	41
13	Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. Plants, 2021, 10, 1533.	1.6	61
14	Antiproliferative Properties and G-Quadruplex-Binding of Symmetrical Naphtho[1,2-b:8,7-b']dithiophene Derivatives. Molecules, 2021, 26, 4309.	1.7	0
15	Melatonin and Phytomelatonin: Chemistry, Biosynthesis, Metabolism, Distribution and Bioactivity in Plants and Animals—An Overview. International Journal of Molecular Sciences, 2021, 22, 9996.	1.8	76
16	A new protein hydrolysate-based biostimulant applied by fertigation promotes relief from drought stress in Capsicum annuum L. Plant Physiology and Biochemistry, 2021, 166, 1076-1086.	2.8	29
17	The application of a biostimulant based on tannins affects root architecture and improves tolerance to salinity in tomato plants. Scientific Reports, 2021, 11, 354.	1.6	50
18	Pomological, Sensorial, Nutritional and Nutraceutical Profile of Seven Cultivars of Cherimoya (Annona cherimola Mill). Foods, 2021, 10, 35.	1.9	24

#	Article	IF	CITATIONS
19	Phytochemical profile and antioxidative properties of Plinia trunciflora fruits: A new source of nutraceuticals. Food Chemistry, 2020, 307, 125515.	4.2	39
20	Transcriptome Analyses and Antioxidant Activity Profiling Reveal the Role of a Lignin-Derived Biostimulant Seed Treatment in Enhancing Heat Stress Tolerance in Soybean. Plants, 2020, 9, 1308.	1.6	39
21	The Application of a Plant Biostimulant Based on Seaweed and Yeast Extract Improved Tomato Fruit Development and Quality. Biomolecules, 2020, 10, 1662.	1.8	52
22	Chemical Profile and Biological Activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona) Tj ETQq0 C	0.rgBT /O 1.7	verlock 10 Tr 42
23	A Biostimulant Seed Treatment Improved Heat Stress Tolerance During Cucumber Seed Germination by Acting on the Antioxidant System and Glyoxylate Cycle. Frontiers in Plant Science, 2020, 11, 836.	1.7	48
24	Effects of Different Microbial Inocula on Tomato Tolerance to Water Deficit. Agronomy, 2020, 10, 170.	1.3	36
25	Physicochemical, Nutraceutical and Sensory Traits of Six Papaya (Carica papaya L.) Cultivars Grown in Greenhouse Conditions in the Mediterranean Climate. Agronomy, 2020, 10, 501.	1.3	32
26	Vaccinium macrocarpon (Cranberry)-Based Dietary Supplements: Variation in Mass Uniformity, Proanthocyanidin Dosage and Anthocyanin Profile Demonstrates Quality Control Standard Needed. Nutrients, 2020, 12, 992.	1.7	37
27	Melatonin reduces inflammatory response in human intestinal epithelial cells stimulated by interleukinâ€1β. Journal of Pineal Research, 2019, 67, e12598.	3.4	64
28	DRUDIT: web-based DRUgs DIscovery Tools to design small molecules as modulators of biological targets. Bioinformatics, 2019, 36, 1562-1569.	1.8	20
29	OxiCyan®, a phytocomplex of bilberry (Vaccinium myrtillus) and spirulina (Spirulina platensis), exerts both direct antioxidant activity and modulation of ARE/Nrf2 pathway in HepG2 cells. Journal of Functional Foods, 2019, 61, 103508.	1.6	30
30	Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures. Biotechnology for Biofuels, 2019, 12, 221.	6.2	41
31	Chemical partitioning and DNA fingerprinting of some pistachio (Pistacia vera L.) varieties of different geographical origin. Phytochemistry, 2019, 160, 40-47.	1.4	34
32	Chemical Characterization and DNA Fingerprinting of Griffonia simplicifolia Baill Molecules, 2019, 24, 1032.	1.7	28
33	Food quality and nutraceutical value of nine cultivars of mango (Mangifera indica L.) fruits grown in Mediterranean subtropical environment. Food Chemistry, 2019, 277, 471-479.	4.2	62
34	Origanum vulgare terpenoids modulate Myrmica scabrinodis brain biogenic amines and ant behaviour. PLoS ONE, 2018, 13, e0209047.	1.1	10
35	Quantitative Determination of 3-O-Acetyl-11-Keto-βBoswellic Acid (AKBA) and Other Boswellic Acids in Boswellia sacra Flueck (syn. B. carteri Birdw) and Boswellia serrata Roxb. Molecules, 2016, 21, 1329.	1.7	45