Spyros A Karamanos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7203928/publications.pdf

Version: 2024-02-01

186209 197736 2,758 139 28 49 citations g-index h-index papers 143 143 143 1147 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural response of steel lined pipes under cyclic bending. International Journal of Solids and Structures, 2022, 234-235, 111245.	1.3	2
2	A new concept for improving the structural resilience of lap-welded steel pipeline joints. Thin-Walled Structures, 2022, 171, 108676.	2.7	3
3	A framework for formulating and implementing non-associative plasticity models for shell buckling computations. International Journal of Solids and Structures, 2022, 257, 111508.	1.3	2
4	Low-cycle fatigue of fillet-welded steel plate connections. Journal of Constructional Steel Research, 2021, 176, 106379.	1.7	7
5	Uplift mechanics of unanchored liquid storage tanks subjected to lateral earthquake loading. Thin-Walled Structures, 2021, 158, 107145.	2.7	31
6	Coupled numerical simulation of low-cycle fatigue damage in metal components. Engineering Structures, 2021, 229, 111536.	2.6	6
7	Influence of plastic prestraining on the fatigue crack propagation rate of S355MC and S460MC structural steels. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 1391-1405.	1.7	5
8	Numerical implementation of bounding-surface model for simulating cyclic inelastic response of metal piping components. Finite Elements in Analysis and Design, 2021, 185, 103493.	1.7	3
9	An implicit numerical scheme for cyclic elastoplasticity and ratcheting under plane stress conditions. Computers and Structures, 2021, 249, 106509.	2.4	4
10	Safeguarding the Integrity of Large-Diameter Steel Pipelines Subjected to Differential Ground Settlements., 2021,,.		3
11	Strain-Based Design of a Large-Diameter Steel Water Pipeline Crossing Ground Settlement Areas. , 2021, , .		1
12	Liner wrinkling in offshore steel lined pipes during reeling installation. Thin-Walled Structures, 2021, 166, 108114.	2.7	12
13	Simulation of Cyclic Loading on Pipe Elbows Using Advanced Plane-Stress Elastoplasticity Models 1. Journal of Pressure Vessel Technology, Transactions of the ASME, 2021, 143, .	0.4	5
14	Experimental Testing Conducted in the Course of the GIPIPE Project and Their Numerical Simulation., 2021,, 51-87.		0
15	Pipeline Response in Strike-Slip (Horizontal) Fault Crossings. , 2021, , 89-106.		0
16	Simplified Analytical Models for Pipeline Deformation Analyses Due to Permanent Ground Deformation., 2021,, 183-204.		0
17	Bending response of lap welded steel pipeline joints. Thin-Walled Structures, 2020, 157, 107065.	2.7	4
18	Fatigue resistance of welded steel tubular X-joints. Marine Structures, 2020, 74, 102809.	1.6	12

#	Article	IF	Citations
19	Numerical simulation of the mechanical behaviour of steel pipe bends under strong cyclic loading. International Journal of Pressure Vessels and Piping, 2020, 188, 104239.	1.2	10
20	Experimental Investigation of Steel Lap Welded Pipe Joint Performance under Severe Axial Loading Conditions in Seismic or Geohazard Areas., 2020,,.		8
21	Newly Developed Seismic Resilient Steel Pipe Joint Safeguards: Pipeline Structural Integrity during Severe Geohazard Events. , 2020, , .		2
22	Structural behavior and design of high-strength steel welded tubular connections under extreme loading. Marine Structures, 2020, 71, 102701.	1.6	21
23	Effect of Manufacturing Process on Lined Pipe Bending Response 1. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142, .	0.6	9
24	Numerical Simulation of JCO-E Pipe Manufacturing Process and Its Effect on the External Pressure Capacity of the Pipe1. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141, .	0.6	9
25	Mechanical Behavior of Dented Steel Pipes Subjected to Bending and Pressure Loading. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141, .	0.6	10
26	Ultra low-cycle fatigue performance of S420 and S700 steel welded tubular X-joints. International Journal of Fatigue, 2019, 129, 105221.	2.8	18
27	Finite Element Analysis of Steel Lap Welded Joint Behavior under Severe Seismic Loading Conditions. , 2019, , .		7
28	Soil–Structure Interaction Effects in Offshore Wind Support Structures Under Seismic Loading. Journal of Offshore Mechanics and Arctic Engineering, 2019, 141, .	0.6	6
29	The effect of spiral cold-bending manufacturing process on pipeline mechanical behavior. International Journal of Solids and Structures, 2019, 166, 167-182.	1.3	3
30	Joint Strength or "Efficiency―Factors of Steel Lap Welded Joints for Use in Water Conveyance. , 2019, ,		0
31	Bending and buckling of internally-pressurized steel lined pipes. Ocean Engineering, 2019, 171, 540-553.	1.9	29
32	Influence of Lined Pipe Fabrication on Liner Wrinkling. , 2019, , .		2
33	Fatigue of Welded Tubular X-Joints in Offshore Wind Platforms. , 2019, , .		1
34	Dented Externally-Pressurised Pipes Subjected to Cyclic Axial Loading. , 2019, , .		0
35	Simulation of Piping Ratcheting Experiments Using Advanced Plane-Stress Cyclic Elastoplasticity Models. , 2019, , .		0
36	Low-Cycle Fatigue of Base-Plate-to-Shell Connection in Uplifting Liquid Storage Tanks Under Seismic Loading., 2019,,.		0

#	Article	IF	CITATIONS
37	A simple and efficient model for seismic response and low-cycle fatigue assessment of uplifting liquid storage tanks. Journal of Loss Prevention in the Process Industries, 2018, 53, 29-44.	1.7	27
38	Permanent earthquakeâ€induced actions in buried pipelines: Numerical modeling and experimental verification. Earthquake Engineering and Structural Dynamics, 2018, 47, 966-987.	2.5	63
39	Experimental Results of Steel Lap Welded Pipe Joints in Seismic Conditions. , 2018, , .		13
40	Numerical Simulation of Steel Lap Welded Pipe Joint Behavior in Seismic Conditions., 2018,,.		9
41	Buckling of internally-pressurized spiral-welded steel pipes under bending. International Journal of Pressure Vessels and Piping, 2018, 165, 270-285.	1.2	8
42	Structural behavior of buried pipe bends and their effect on pipeline response in fault crossing areas. Bulletin of Earthquake Engineering, 2017, 15, 4999-5024.	2.3	33
43	Performance Criteria for Liquid Storage Tanks and Piping Systems Subjected to Seismic Loading. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139, .	0.4	44
44	Influence of variability of material mechanical properties on seismic performance of steel and steel–concrete composite structures. Bulletin of Earthquake Engineering, 2017, 15, 1559-1607.	2.3	17
45	Soil-Pipe Interaction Models for the Simulation of Buried Steel Pipeline Behaviour Against Geohazards. , 2017, , .		4
46	09.08: Structural behaviour of steel seismic links under strong cyclic loading. Ce/Papers, 2017, 1, 2414-2423.	0.1	0
47	Analytical model for the strain analysis of continuous buried pipelines in geohazard areas. Engineering Structures, 2017, 152, 57-69.	2.6	58
48	Analysis and Design of Buried Steel Water Pipelines in Seismic Areas. Journal of Pipeline Systems Engineering and Practice, 2017, 8, .	0.9	27
49	CFRP Reinforcement and Repair of Steel Pipe Elbows Subjected to Severe Cyclic Loading. Journal of Pressure Vessel Technology, Transactions of the ASME, 2017, 139, .	0.4	3
50	Failure analysis of a welded steel pipe at Kullar fault crossing. Engineering Failure Analysis, 2017, 71, 43-62.	1.8	37
51	Structural resistance of high-strength steel CHS members. Journal of Constructional Steel Research, 2017, 128, 152-165.	1.7	20
52	Mechanical Response of Steel Pipe Welded Lap Joints in Seismic Areas., 2017,,.		3
53	Analytical Methodologies for Buried Pipeline Design in Geohazard Areas. , 2016, , .		4
54	The Effect of Spiral Cold-Bending Manufacturing Process on Pipeline Mechanical Behavior., 2016,,.		1

#	Article	IF	CITATIONS
55	Ultimate bending capacity of spiral-welded steel tubes – Part I: Experiments. Thin-Walled Structures, 2016, 102, 286-304.	2.7	40
56	Finite Element Analysis of the Mechanical Behavior of Mitered Steel Pipe Elbows under Bending and Pressure. , $2016, , .$		3
57	Finite element analysis of cyclically-loaded steel pipes during deep water reeling installation. Ocean Engineering, 2016, 124, 113-124.	1.9	17
58	Improving the Performance of Steel Pipe Welded Lap Joints in Geohazard Areas. , 2016, , .		4
59	The OECD-NEA Programme on Metallic Component Margins Under High Seismic Loads (MECOS). , 2016, , .		4
60	Numerical Simulation of CFRP Reinforced Steel Pipe Elbows Subjected to Cyclic Loading. , 2016, , .		0
61	A refined analytical model for earthquake-induced sloshing in half–full deformable horizontal cylindrical liquid containers. Soil Dynamics and Earthquake Engineering, 2016, 85, 191-201.	1.9	6
62	Mechanical Behavior of Steel Pipe Bends: An Overview. Journal of Pressure Vessel Technology, Transactions of the ASME, 2016, 138, .	0.4	39
63	Finite element analysis of UOE manufacturing process and its effect on mechanical behavior of offshore pipes. International Journal of Solids and Structures, 2016, 83, 13-27.	1.3	27
64	Ultimate bending capacity of spiral-welded steel tubes – Part II: Predictions. Thin-Walled Structures, 2016, 102, 305-319.	2.7	37
65	Non-associative		

#	Article	IF	CITATIONS
73	Pipe–soil interaction and pipeline performance under strike–slip fault movements. Soil Dynamics and Earthquake Engineering, 2015, 72, 48-65.	1.9	150
74	Liquid Storage Tanks: Seismic Analysis. , 2015, , 1339-1359.		0
7 5	Seismic Design of Buried Steel Water Pipelines. , 2014, , .		14
76	Structural Performance of Buried Steel Pipelines Crossing Strike-Slip Faults. , 2014, , .		4
77	Buckling of High-Strength Steel Cylinders Under Cyclic Bending in the Inelastic Range 1. Journal of Pressure Vessel Technology, Transactions of the ASME, 2014, 136, .	0.4	6
78	Bending Deformation Capacity of Large-Diameter Spiral-Welded Tubes. , 2014, , .		6
79	Closure to "Discussion of â€~Mechanics of Confined Thin-Walled Cylinders Subjected to External Pressure,'―(Vasilikis, D., and Karamanos, S., 2014, Appl. Mech. Rev., 66(1), p. 010801). Applied Mechanics Reviews, 2014, 66, .	4.5	2
80	Effects of UOE Manufacturing Process on Pressurized Bending Response of Offshore Pipes. , 2014, , .		3
81	Mechanics of Confined Thin-Walled Cylinders Subjected to External Pressure. Applied Mechanics Reviews, 2014, 66, .	4.5	25
82	Response of steel tubes under concentrated lateral loads. Steel Construction, 2014, 7, 133-140.	0.4	4
83	Structural Performance of Steel Pipe Tee-Junctions. , 2014, , .		0
84	Seismic Response of Unanchored Liquid Storage Tanks. , 2013, , .		8
85	Pipe Elbows Under Strong Cyclic Loading. Journal of Pressure Vessel Technology, Transactions of the ASME, 2013, 135, .	0.4	42
86	Buckling of High-Strength Steel Cylinders Under Cyclic Bending in the Inelastic Range. , 2013, , .		1
87	Wrinkling of Lined Steel Pipes Under Bending. , 2013, , .		3
88	Low Cycle Fatigue Tests and Simulations on Steel Elbows. , 2013, , .		1
89	Experimental and Numerical Investigation of Pressurized Pipe Elbows Under Strong Cyclic Loading. , 2013, , .		6
90	Experimental and Numerical Investigation of Pipe T-Junctions Under Strong Cyclic Loading., 2013,,.		4

#	Article	IF	CITATIONS
91	Mechanical Behavior of Steel Pipes With Local Wall Distortions Under Cyclic Loading., 2012,,.		0
92	Effects of Base Uplifting on the Seismic Response of Unanchored Liquid Storage Tanks., 2012,,.		1
93	Pipe Elbows Under Strong Cyclic Loading. , 2012, , .		2
94	Mechanical behavior and wrinkling of lined pipes. International Journal of Solids and Structures, 2012, 49, 3432-3446.	1.3	56
95	Mechanical behavior of buried steel pipes crossing active strike-slip faults. Soil Dynamics and Earthquake Engineering, 2012, 41, 164-180.	1.9	187
96	Numerical Simulation of Buried Steel Pipelines under Strike-Slip Fault Displacements., 2011,,.		1
97	Buckling of Clad Pipes Under Bending and External Pressure. , 2011, , .		5
98	Buckling Design of Confined Steel Cylinders Under External Pressure. Journal of Pressure Vessel Technology, Transactions of the ASME, 2011, 133, .	0.4	16
99	Buckling of Thin-Walled Long Steel Cylinders Subjected to Bending. Journal of Pressure Vessel Technology, Transactions of the ASME, 2011, 133, .	0.4	19
100	Finite Element Analysis of Industrial Steel Elbows Under Strong Cyclic Loading. , 2011, , .		6
101	Numerical Analysis of Externally-Induced Sloshing in Spherical Liquid Containers. Computational Methods in Applied Sciences (Springer), 2011, , 489-513.	0.1	1
102	Mechanical Behavior of Buried Steel Pipelines Crossing Strike-Slip Seismic Faults., 2011,,.		1
103	Finite element analysis of buried steel pipelines under strike-slip fault displacements. Soil Dynamics and Earthquake Engineering, 2010, 30, 1361-1376.	1.9	253
104	Stability of long transversely-isotropic elastic cylindrical shells under bending. International Journal of Solids and Structures, 2010, 47, 10-24.	1.3	32
105	Buckling of Thin-Walled Long Steel Cylinders Under Bending. , 2009, , .		0
106	Buckling Design of Confined Steel Cylinders Under External Pressure. , 2009, , .		0
107	Stability of confined thin-walled steel cylinders under external pressure. International Journal of Mechanical Sciences, 2009, 51, 21-32.	3.6	75
108	Finite Element Analysis of Externally-Induced Sloshing in Horizontal-Cylindrical and Axisymmetric Liquid Vessels. Journal of Pressure Vessel Technology, Transactions of the ASME, 2009, 131, .	0.4	25

#	Article	lF	Citations
109	STABILITY OF TUBES AND PIPELINES. Computational and Experimental Methods in Structures, 2008, , 259-307.	0.2	0
110	Ultimate Capacity of Pipe Bends Under Bending and Pressure. , 2008, , .		4
111	Axial Compression Capacity of Welded-Slip Pipeline Joints. Journal of Transportation Engineering, 2007, 133, 335-340.	0.9	11
112	Variational Solutions for Externally Induced Sloshing in Horizontal-Cylindrical and Spherical Vessels. Journal of Engineering Mechanics - ASCE, 2007, 133, 641-655.	1.6	45
113	Lateral Loading of Internally Pressurized Steel Pipes. Journal of Pressure Vessel Technology, Transactions of the ASME, 2007, 129, 630-638.	0.4	23
114	Ultimate Capacity of Welded-Slip Joints under Axial Compression. , 2006, , 1.		0
115	Buckling and post-buckling of long pressurized elastic thin-walled tubes under in-plane bending. International Journal of Non-Linear Mechanics, 2006, 41, 491-511.	1.4	65
116	Denting of internally pressurized tubes under lateral loads. International Journal of Mechanical Sciences, 2006, 48, 1080-1094.	3.6	50
117	Pipe Response Under Concentrated Lateral Loads and External Pressure. , 2006, , 137.		0
118	Sloshing Effects on the Seismic Design of Horizontal-Cylindrical and Spherical Industrial Vessels. Journal of Pressure Vessel Technology, Transactions of the ASME, 2006, 128, 328-340.	0.4	62
119	Pipe Response Under Concentrated Lateral Loads and External Pressure. , 2005, , 479.		0
120	Finite element modeling to expand the UMCCA model to describe biofilm mechanical behavior. Water Science and Technology, 2005, 52, 161-166.	1.2	126
121	Sloshing Effects on the Seismic Design of Horizontal-Cylindrical and Spherical Vessels., 2004,, 225.		4
122	Response of half–full horizontal cylinders under transverse excitation. Journal of Fluids and Structures, 2004, 19, 985-1003.	1.5	52
123	Collapse of pressurized elastoplastic tubular members under lateral loads. International Journal of Mechanical Sciences, 2004, 46, 35-56.	3.6	44
124	Pressure effects on the static response of offshore tubular connections. Marine Structures, 2004, 17, 455-474.	1.6	6
125	Refined Solutions of Externally Induced Sloshing in Half-Full Spherical Containers. Journal of Engineering Mechanics - ASCE, 2003, 129, 1369-1379.	1.6	21
126	Longitudinal sloshing effects in half full horizontal cylindrical vessels., 2003,, 1078-1082.		0

#	Article	IF	Citations
127	SCF equations in multi-planar welded tubular DT-joints including bending effects. Marine Structures, 2002, 15, 157-173.	1.6	52
128	Bending instabilities of elastic tubes. International Journal of Solids and Structures, 2002, 39, 2059-2085.	1.3	99
129	Stress concentrations in tubular gap K-joints: mechanics and fatigue design. Engineering Structures, 2000, 22, 4-14.	2.6	81
130	Stress Concentrations in Tubular DT-Joints for Fatigue Design. Journal of Structural Engineering, 2000, 126, 1320-1330.	1.7	11
131	Stress concentrations in multi-planar welded CHS XX-connections. Journal of Constructional Steel Research, 1999, 50, 259-282.	1.7	51
132	Finite element analysis of tube stability in deep water. Computers and Structures, 1997, 64, 791-807.	2.4	7
133	Tubular Members. I: Stability Analysis and Preliminary Results. Journal of Engineering Mechanics - ASCE, 1996, 122, 64-71.	1.6	36
134	Tubular Members. II: Local Buckling and Experimental Verification. Journal of Engineering Mechanics - ASCE, 1996, 122, 72-78.	1.6	28
135	Tension Effects on Pressure Capacity of Tubular Members. Journal of Structural Engineering, 1995, 121, 955-963.	1.7	2
136	Effects of External Pressure on Capacity of Tubular Beam-Columns. Journal of Structural Engineering, 1995, 121, 1620-1628.	1.7	0
137	Stability of Deepwater Pipelines Under Combined Loading. , 1991, , .		8
138	A simple and efficient solution method for the limit elasto-plastic analysis of plane frames. Computational Mechanics, 1991, 8, 235-248.	2.2	5
139	Stability of Inelastic Tubes under External Pressure and Bending. Journal of Engineering Mechanics - ASCE, 1991, 117, 2845-2861.	1.6	27