Li Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7203789/publications.pdf Version: 2024-02-01

		430442	395343
42	1,122	18	33
papers	citations	h-index	g-index
42	42	42	1259
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Forceâ€Reversible and Energetic Indoleâ€Mgâ€Indole Cationâ€Ï€ Interaction for Designing Toughened and Multifunctional Highâ€Performance Thermosets. Advanced Functional Materials, 2022, 32, .	7.8	18
2	Force–reversible chemical reaction at ambient temperature for designing toughened dynamic covalent polymer networks. Nature Communications, 2022, 13, .	5.8	16
3	A Toughening and Antiâ€Counterfeiting Benzotriazoleâ€Based Highâ€Performance Polymer Film Driven by Appropriate Intermolecular Coordination Force. Macromolecular Rapid Communications, 2021, 42, 2000617.	2.0	2
4	Hydrophilic domains compose of interlocking cation-ï€ blocks for constructing hard actuator with robustness and rapid humidity responsiveness. Chemical Engineering Journal, 2021, 414, 128820.	6.6	6
5	Enhanced mechanical and photocatalytic performances of epoxy nanocomposites filled with potassiumâ€modified graphitic carbon nitride nanosheets. Journal of Applied Polymer Science, 2021, 138, 51328.	1.3	2
6	Selective Carbon Dioxide Capture in Antifouling Indole-based Microporous Organic Polymers. Chinese Journal of Polymer Science (English Edition), 2020, 38, 187-194.	2.0	9
7	An indole-based smart aerogel for simultaneous visual detection and removal of trinitrotoluene in water via synergistic effect of dipole-Ï€ and donor-acceptor interactions. Chemical Engineering Journal, 2020, 384, 123358.	6.6	18
8	Unprecedented toughening high-performance polyhexahydrotriazines constructed by incorporating point–face cation–΀ interactions in covalently crosslinked networks and the visual detection of tensile strength. Chemical Communications, 2020, 56, 1054-1057.	2.2	15
9	An indole-derived porous organic polymer for the efficient visual colorimetric capture of iodine in aqueous media <i>via</i> the synergistic effects of cation–π and electrostatic forces. Chemical Communications, 2020, 56, 1401-1404.	2.2	30
10	Intermolecular channel expansion induced by cation-ï€ interactions to enhance lithium storage in a crosslinked ï€-conjugated organic anode. Journal of Power Sources, 2020, 449, 227551.	4.0	21
11	Recyclable and Dual Crossâ€Linked Highâ€Performance Polymer with an Amplified Strength–Toughness Combination. Macromolecular Rapid Communications, 2020, 41, e1900606.	2.0	10
12	A novel carboxylic-functional indole-based aerogel for highly effective removal of heavy metals from aqueous solution <i>via</i> synergistic effects of face–point and point–point interactions. RSC Advances, 2019, 9, 24875-24879.	1.7	2
13	Cation–π induced lithium-doped conjugated microporous polymer with remarkable hydrogen storage performance. Chemical Communications, 2019, 55, 11227-11230.	2.2	18
14	A recyclable indole-based polymer for trinitrotoluene adsorption <i>via</i> the synergistic effect of dipole–݀ and donor–acceptor interactions. Polymer Chemistry, 2019, 10, 4632-4636.	1.9	16
15	A bioinspired strategy towards super-adsorbent hydrogel spheres <i>via</i> self-sacrificing micro-reactors for robust wastewater remediation. Journal of Materials Chemistry A, 2019, 7, 21386-21403.	5.2	46
16	An indole-based aerogel for enhanced removal of heavy metals from water <i>via</i> the synergistic effects of complexation and cation–π interactions. Journal of Materials Chemistry A, 2019, 7, 531-539.	5.2	51
17	Rational design of a boron-dipyrromethene-based fluorescent probe for detecting Pd ²⁺ sensitively and selectively in aqueous media. Analyst, The, 2019, 144, 1260-1264.	1.7	23
18	Sandwich-like Structure of Indole and Carbon Dioxide with Efficient CO ₂ Capture and Conversion. ACS Applied Polymer Materials, 2019, 1, 3389-3395.	2.0	8

Li Yang

#	Article	IF	CITATIONS
19	Renewable 4-HIF/NaOH aerogel for efficient methylene blue removal <i>via</i> cation–π interaction induced electrostatic interaction. RSC Advances, 2019, 9, 29772-29778.	1.7	8
20	Synthesis of a metal-coordinated <i>N</i> -substituted polybenzimidazole pyridine sulfone and method for the nondestructive analysis of thermal stability. High Performance Polymers, 2019, 31, 238-246.	0.8	14
21	Metal-coordination crosslinked N-polyindoles as recyclable high-performance thermosets and nondestructive detection for their tensile strength and glass transition temperature. Chemical Communications, 2018, 54, 2906-2909.	2.2	21
22	Recyclable Crosslinked Highâ€Performance Polymers via Adjusting Intermolecular Cation–π Interactions and the Visual Detection of Tensile Strength and Glass Transition Temperature. Macromolecular Rapid Communications, 2018, 39, e1800031.	2.0	15
23	Facile synthesis of recyclable Zn(<scp>ii</scp>)-metallosupramolecular polymers and the visual detection of tensile strength and glass transition temperature. Polymer Chemistry, 2018, 9, 2721-2726.	1.9	8
24	Highâ€Performance pHâ€Switchable Supramolecular Thermosets via Cation–π Interactions. Advanced Materials, 2018, 30, 1704234.	11.1	105
25	Recyclable Cu(II)â€Coordination Crosslinked Poly(benzimidazolyl pyridine)s as Highâ€Performance Polymers. Macromolecular Rapid Communications, 2018, 39, e1700573.	2.0	20
26	Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications. Journal of Membrane Science, 2018, 549, 23-27.	4.1	79
27	Facile synthesis of thermal responsive fluorescent poly(imino ether sulfone): Nondestructive detection of Tg and erasable thermal imaging. Polymer Testing, 2018, 72, 330-334.	2.3	Ο
28	An encouraging recyclable synergistic hydrogen bond crosslinked high-performance polymer with visual detection of tensile strength. Polymer Testing, 2018, 71, 167-172.	2.3	3
29	A recyclable hydroxyl functionalized polyindole hydrogel for sodium hydroxide extraction <i>via</i> the synergistic effect of cation–π interactions and hydrogen bonding. Chemical Communications, 2018, 54, 9785-9788.	2.2	24
30	Construction of triphenylamine functional phthalazinone-based covalent triazine frameworks for effective CO2 capture. Polymer, 2018, 151, 65-74.	1.8	17
31	Enhanced carbon dioxide capture in an indole-based microporous organic polymer <i>via</i> synergistic effects of indoles and their adjacent carbonyl groups. Polymer Chemistry, 2018, 9, 4455-4459.	1.9	17
32	An indole-based conjugated microporous polymer: a new and stable lithium storage anode with high capacity and long life induced by cation–i€ interactions and a N-rich aromatic structure. Journal of Materials Chemistry A, 2018, 6, 18794-18798.	5.2	43
33	High and Selective Carbon Dioxide Capture in Nitrogen-Containing Aerogels via Synergistic Effects of Electrostatic In-Plane and Dispersive π–π-Stacking Interactions. ACS Applied Materials & Interfaces, 2017, 9, 15213-15218.	4.0	35
34	Explosives in the Cage: Metal–Organic Frameworks for Highâ€Energy Materials Sensing and Desensitization. Advanced Materials, 2017, 29, 1701898.	11.1	127
35	Facile synthesis of new coumarin-based colorimetric and fluorescent chemosensors: Highly efficient and selective detection of Pd2+ in aqueous solutions. Sensors and Actuators B: Chemical, 2017, 240, 212-219.	4.0	43
36	A nitrogen-rich, azaindole-based microporous organic network: synergistic effect of local dipole–i€ and dipole–quadrupole interactions on carbon dioxide uptake. Polymer Chemistry, 2016, 7, 5768-5772.	1.9	25

Li Yang

#	Article	IF	CITATIONS
37	Rational design of a novel indole-based microporous organic polymer: enhanced carbon dioxide uptake via local dipoleâ€″ï€ interactions. Journal of Materials Chemistry A, 2016, 4, 2517-2523.	5.2	65
38	Hydrogen bond cross-linked sulfonated poly(imino ether ether ketone) (PIEEK) for fuel cell membranes. Journal of Power Sources, 2015, 282, 401-408.	4.0	16
39	Rational design of a fluorescent poly(N-aryleneindole ether sulfone) switch by cation–Ĩ€ interactions. Polymer Chemistry, 2015, 6, 697-702.	1.9	26
40	Facile synthesis of heatâ€resistant and photoluminescent poly(<i>N</i> â€aryleneindole ether)s via catalystâ€free CN/CO coupling reaction. Journal of Polymer Science Part A, 2014, 52, 313-320.	2.5	22
41	Facile synthesis of soluble aromatic poly(amide amine)s via C-N coupling reaction: Characterization, thermal, and optical properties. Journal of Polymer Science Part A, 2013, 51, 4845-4852.	2.5	10
42	1,1′-Binaphthyl-based imidazolium chemosensors for highly selective recognition of tryptophan in aqueous solutions. Organic and Biomolecular Chemistry, 2010, 8, 339-348.	1.5	68