
Ryong Ryoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7203651/publications.pdf Version: 2024-02-01

PYONG PYOO

#	ARTICLE	IF	CITATIONS
1	Doping effect of zeolite-templated carbon on electrical conductance and supercapacitance properties. Carbon, 2022, 193, 42-50.	5.4	15
2	Enhanced catalytic activity of phosphorus-modified SSZ-13 zeolite in the ethylene-to-propylene reaction by controlling acidity and intracrystalline diffusivity. Chemical Engineering Journal, 2022, 446, 137169.	6.6	7
3	Hydrogen spillover in nonreducible oxides: Mechanism and catalytic utilization. Nano Research, 2022, 15, 10357-10365.	5.8	14
4	Base-type nitrogen doping in zeolite-templated carbon for enhancement of carbon dioxide sorption. Journal of CO2 Utilization, 2022, 62, 102084.	3.3	5
5	Synergistic interactions between water and the metal/oxide interface in CO oxidation on Pt/CeO2 model catalysts. Catalysis Today, 2022, , .	2.2	3
6	Tailoring Multiple Porosities of Hierarchical ZSMâ€5 Zeolites by Carbon Dots for Highâ€Performance Catalytic Transformation. Advanced Materials Interfaces, 2021, 8, 2001846.	1.9	5
7	Cu oxide deposited on shape-controlled ceria nanocrystals for CO oxidation: influence of interface-driven oxidation states on catalytic activity. Catalysis Science and Technology, 2021, 11, 6134-6142.	2.1	19
8	White fluorescence of polyaromatics derived from methanol conversion in Ca ²⁺ -exchanged small-pore zeolites. Materials Chemistry Frontiers, 2021, 5, 4634-4644.	3.2	3
9	The facet effect of ceria nanoparticles on platinum dispersion and catalytic activity of methanol partial oxidation. Chemical Communications, 2021, 57, 7382-7385.	2.2	16
10	Synthesis of zeolite-templated carbons using oxygen-containing organic solvents. Microporous and Mesoporous Materials, 2021, 318, 111038.	2.2	14
11	Synergy of Extraframework Al ³⁺ Cations and BrĄ̃nsted Acid Sites on Hierarchical ZSM-5 Zeolites for Butanol-to-Olefin Conversion. Journal of Physical Chemistry C, 2021, 125, 11665-11676.	1.5	12
12	Microporous 3D Graphene‣ike Carbon as Iodine Host for Zincâ€Based Battery–Supercapacitor Hybrid Energy Storage with Ultrahigh Energy and Power Densities. Advanced Energy and Sustainability Research, 2021, 2, 2100076.	2.8	11
13	PtZn Intermetallic Compound Nanoparticles in Mesoporous Zeolite Exhibiting High Catalyst Durability for Propane Dehydrogenation. ACS Catalysis, 2021, 11, 9233-9241.	5.5	46
14	Catalytic Interplay of Ga, Pt, and Ce on the Alumina Surface Enabling High Activity, Selectivity, and Stability in Propane Dehydrogenation. ACS Catalysis, 2021, 11, 10767-10777.	5.5	28
15	Influence of hierarchical ZSM-5 catalysts with various acidity on the dehydration of glycerol to acrolein. Magnetic Resonance Letters, 2021, 1, 71-80.	0.7	7
16	Engineering Active Sites in Threeâ€Dimensional Hierarchically Porous Grapheneâ€Like Carbon with Co and Nâ€Doped Carbon for Highâ€Performance Zincâ€Air Battery. ChemElectroChem, 2021, 8, 4038-4046.	1.7	5
17	Sodium-free synthesis of mesoporous zeolite to support Pt-Y alloy nanoparticles exhibiting high catalytic performance in propane dehydrogenation. Journal of Catalysis, 2021, 404, 760-770.	3.1	16
18	Nanosponge TSâ€1: A Fully Crystalline Hierarchical Epoxidation Catalyst. Advanced Materials Interfaces, 2021, 8, 2001288.	1.9	9

#	Article	IF	CITATIONS
19	Microporous 3D Grapheneâ€Like Carbon as Iodine Host for Zincâ€Based Battery–Supercapacitor Hybrid Energy Storage with Ultrahigh Energy and Power Densities. Advanced Energy and Sustainability Research, 2021, 2, 2170023.	2.8	1
20	Soft-to-hard consecutive templating one-pot route from metal nitrate/phenol resin/surfactant to mesoporous metal oxides with enhanced thermal stability. Microporous and Mesoporous Materials, 2020, 293, 109767.	2.2	10
21	Flame-made amorphous solid acids with tunable acidity for the aqueous conversion of glucose to levulinic acid. Green Chemistry, 2020, 22, 688-698.	4.6	14
22	Cascade reaction engineering on zirconia-supported mesoporous MFI zeolites with tunable Lewis–BrÃ,nsted acid sites: a case of the one-pot conversion of furfural to γ-valerolactone. RSC Advances, 2020, 10, 35318-35328.	1.7	21
23	Highly dispersed Pt nanoclusters supported on zeolite-templated carbon for the oxygen reduction reaction. RSC Advances, 2020, 10, 32290-32295.	1.7	12
24	Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature, 2020, 585, 221-224.	13.7	233
25	Catalytic Synergy on PtNi Bimetal Catalysts Driven by Interfacial Intermediate Structures. ACS Catalysis, 2020, 10, 10459-10467.	5.5	53
26	Microporous 3D Graphene-like Zeolite-Templated Carbons for Preferential Adsorption of Ethane. ACS Applied Materials & Interfaces, 2020, 12, 28484-28495.	4.0	25
27	Mesopore-selective incorporation of strong BrÃ,nsted acid catalytic sites via aluminium grafting on hierarchically porous siliceous MFI zeolite. Microporous and Mesoporous Materials, 2020, 305, 110353.	2.2	8
28	Atomic Scale Mechanisms Underlying Thermal Reshaping of Anisotropic Gold Nanocrystals Revealed by in Situ Electron Microscopy. Journal of Physical Chemistry C, 2020, 124, 12855-12863.	1,5	12
29	Self-organization of silicates on different length scales exemplified by amorphous mesoporous silica and mesoporous zeolite beta using multiammonium surfactants. RSC Advances, 2020, 10, 20928-20938.	1.7	4
30	Facile synthesis of mesoporous zeolite Y using seed gel and amphiphilic organosilane. Microporous and Mesoporous Materials, 2019, 288, 109579.	2.2	13
31	Birth of a class of nanomaterial. Nature, 2019, 575, 40-41.	13.7	30
32	Template dissolution with NaOH–HCl in the synthesis of zeolite-templated carbons: Effects on oxygen functionalization andÂelectrical energy storage characteristics. Carbon, 2019, 155, 570-579.	5.4	32
33	Sulfonium-based organic structure-directing agents for microporous aluminophosphate synthesis. Microporous and Mesoporous Materials, 2019, 280, 75-81.	2.2	5
34	Ultrafast charge transfer coupled with lattice phonons in two-dimensional covalent organic frameworks. Nature Communications, 2019, 10, 1873.	5.8	93
35	Co ₃ O ₄ nanosheets on zeolite-templated carbon as an efficient oxygen electrocatalyst for a zinc–air battery. Journal of Materials Chemistry A, 2019, 7, 9988-9996.	5.2	60
36	Variation of nitrogen species in zeolite-templated carbon by low-temperature carbonization of pyrrole and the effect on oxygen reduction activity. Journal of Materials Chemistry A, 2019, 7, 8353-8360.	5.2	34

#	Article	IF	CITATIONS
37	Revisiting side-chain alkylation of toluene to styrene: Critical role of microporous structures in catalysts. Journal of Catalysis, 2019, 373, 25-36.	3.1	32
38	Oxygen activation on the interface between Pt nanoparticles and mesoporous defective TiO2 during CO oxidation. Journal of Chemical Physics, 2019, 151, 234716.	1.2	37
39	Anomalously High Lithium Storage in Three-Dimensional Graphene-like Ordered Microporous Carbon Electrodes. Journal of Physical Chemistry C, 2018, 122, 4955-4962.	1.5	15
40	Confinement of Supported Metal Catalysts at High Loading in the Mesopore Network of Hierarchical Zeolites, with Access via the Microporous Windows. ACS Catalysis, 2018, 8, 876-879.	5.5	44
41	Nanocage-Confined Synthesis of Fluorescent Polycyclic Aromatic Hydrocarbons in Zeolite. Journal of the American Chemical Society, 2018, 140, 7101-7107.	6.6	24
42	Zeolite-templated nanoporous carbon for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 10388-10394.	5.2	66
43	Unraveling Direct Formation of Hierarchical Zeolite Beta by Dynamic Light Scattering, Small Angle X-ray Scattering, and Liquid and Solid-State NMR: Insights at the Supramolecular Level. Chemistry of Materials, 2018, 30, 2676-2686.	3.2	15
44	High utilization of methanol in toluene methylation using MFI zeolite nanosponge catalyst. Catalysis Today, 2018, 303, 143-149.	2.2	22
45	Supporting Nickel To Replace Platinum on Zeolite Nanosponges for Catalytic Hydroisomerization of <i>n</i> -Dodecane. ACS Catalysis, 2018, 8, 10545-10554.	5.5	76
46	Ultramicroporous Carbon Synthesis Using Lithium-Ion Effect in ZSM-5 Zeolite Template. Chemistry of Materials, 2018, 30, 6513-6520.	3.2	16
47	Boosting hot electron flux and catalytic activity at metal–oxide interfaces of PtCo bimetallic nanoparticles. Nature Communications, 2018, 9, 2235.	5.8	80
48	Cooperative Structure Direction of Diammonium Surfactants and Sodium lons to Generate MFI Zeolite Nanocrystals of Controlled Thickness. Chemistry of Materials, 2017, 29, 1752-1757.	3.2	33
49	Mesoporous MFI zeolites as high performance catalysts for Diels-Alder cycloaddition of bio-derived dimethylfuran and ethylene to renewable p-xylene. Applied Catalysis B: Environmental, 2017, 206, 490-500.	10.8	50
50	Surfactant-directed mesoporous zeolites with enhanced catalytic activity in tetrahydropyranylation of alcohols: Effect of framework type and morphology. Applied Catalysis A: General, 2017, 537, 24-32.	2.2	23
51	Highly monodisperse supported metal nanoparticles by basic ammonium functionalization of mesopore walls for industrially relevant catalysis. Chemical Communications, 2017, 53, 3810-3813.	2.2	14
52	Tomographic imaging of pore networks and connectivity of surfactant-directed mesoporous zeolites. Journal of Materials Chemistry A, 2017, 5, 11086-11093.	5.2	28
53	Facile large-scale synthesis of three-dimensional graphene-like ordered microporous carbon via ethylene carbonization in CaX zeolite template. Carbon, 2017, 118, 517-523.	5.4	37
54	Nonâ€Topotactic Transformation of Silicate Nanolayers into Mesostructured MFI Zeolite Frameworks During Crystallization. Angewandte Chemie - International Edition, 2017, 56, 5164-5169.	7.2	17

#	Article	IF	CITATIONS
55	Nonâ€Topotactic Transformation of Silicate Nanolayers into Mesostructured MFI Zeolite Frameworks During Crystallization. Angewandte Chemie, 2017, 129, 5246-5251.	1.6	3
56	Extremely high electrical conductance of microporous 3D graphene-like zeolite-templated carbon framework. Scientific Reports, 2017, 7, 11460.	1.6	23
57	Dry-gel synthesis of mesoporous MFI zeolite nanosponges using a structure-directing surfactant. Microporous and Mesoporous Materials, 2017, 240, 123-129.	2.2	20
58	Synthesis of mesoporous zeolites in fluoride media with structure-directing multiammonium surfactants. Microporous and Mesoporous Materials, 2017, 239, 19-27.	2.2	33
59	Mesoporous EU-1 zeolite as a highly active catalyst for ethylbenzene hydroisomerization. Catalysis Science and Technology, 2016, 6, 2735-2741.	2.1	14
60	N-doped zeolite-templated carbon as a metal-free electrocatalyst for oxygen reduction. RSC Advances, 2016, 6, 43091-43097.	1.7	24
61	Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature, 2016, 535, 131-135.	13.7	253
62	Impact of pore topology and crystal thickness of nanosponge zeolites on the hydroconversion of ethylbenzene. Catalysis Science and Technology, 2016, 6, 2653-2662.	2.1	9
63	Selective p-xylene production from biomass-derived dimethylfuran and ethylene over zeolite beta nanosponge catalysts. Applied Catalysis B: Environmental, 2016, 185, 100-109.	10.8	72
64	Mesoporous In-Sn binary oxides of crystalline framework with extended compositional variation. Microporous and Mesoporous Materials, 2016, 228, 14-21.	2.2	0
65	Nanostructured MFI-type zeolites as catalysts in glycerol etherification with tert -butyl alcohol. Journal of Molecular Catalysis A, 2016, 422, 115-121.	4.8	26
66	Anatase TiO2 nanosheets with surface acid sites for Friedel–Crafts alkylation. Microporous and Mesoporous Materials, 2016, 222, 185-191.	2.2	28
67	Facile synthesis of carbon dot-Au nanoraspberries and their application as high-performance counter electrodes in quantum dot-sensitized solar cells. Carbon, 2016, 96, 139-144.	5.4	63
68	Mesostructured Zeolites. Green Chemistry and Sustainable Technology, 2016, , 101-148.	0.4	4
69	Coâ€development of Crystalline and Mesoscopic Order in Mesostructured Zeolite Nanosheets. Angewandte Chemie, 2015, 127, 941-945.	1.6	9
70	Synthesis of Silicate Zeolite Analogues Using Organic Sulfonium Compounds as Structureâ€Đirecting Agents. Angewandte Chemie - International Edition, 2015, 54, 12805-12808.	7.2	24
71	Innenrücktitelbild: Synthesis of Silicate Zeolite Analogues Using Organic Sulfonium Compounds as Structure-Directing Agents (Angew. Chem. 43/2015). Angewandte Chemie, 2015, 127, 13015-13015.	1.6	0
72	Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature, 2015, 518, 385-389.	13.7	207

#	Article	IF	CITATIONS
73	Synthesis of mesoporous carbons using silica templates impregnated with mineral acids. Microporous and Mesoporous Materials, 2015, 207, 156-162.	2.2	21
74	Corrigendum to "Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences―[J. Catal. 288 (2012) 115–123]. Journal of Catalysis, 2015, 327, 96.	3.1	0
75	MFI zeolite nanosheets with post-synthetic Ti grafting for catalytic epoxidation of bulky olefins using H ₂ O ₂ . Chemical Communications, 2015, 51, 13102-13105.	2.2	42
76	Mesoporous titania with anatase framework synthesized using polyphenolic structure-directing agent: Synthesis domain and catalytic metal loading. Microporous and Mesoporous Materials, 2015, 212, 117-124.	2.2	9
77	Mesoporous MFI Zeolite Nanosponge as a High-Performance Catalyst in the Pechmann Condensation Reaction. ACS Catalysis, 2015, 5, 2596-2604.	5.5	74
78	Acid catalytic function of mesopore walls generated by MFI zeolite desilication in comparison with external surfaces of MFI zeolite nanosheet. Applied Catalysis A: General, 2015, 492, 68-75.	2.2	25
79	Coâ€development of Crystalline and Mesoscopic Order in Mesostructured Zeolite Nanosheets. Angewandte Chemie - International Edition, 2015, 54, 927-931.	7.2	40
80	Mesopore wall-catalyzed Friedel–Crafts acylation of bulky aromatic compounds in MFI zeolite nanosponge. Catalysis Today, 2015, 243, 103-108.	2.2	44
81	Conversion of Kraft Lignin Over Hierarchical MFI Zeolite. Journal of Nanoscience and Nanotechnology, 2014, 14, 2414-2418.	0.9	18
82	Mesopore expansion of surfactant-directed nanomorphic zeolites with trimethylbenzene. Microporous and Mesoporous Materials, 2014, 194, 83-89.	2.2	8
83	Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Progress in Solid State Chemistry, 2014, 42, 1-21.	3.9	66
84	Annulation of Phenols: Catalytic Behavior of Conventional and 2 D Zeolites. ChemCatChem, 2014, 6, 1919-1927.	1.8	21
85	High catalytic performance of surfactant-directed nanocrystalline zeolites for liquid-phase Friedel–Crafts alkylation of benzene due to external surfaces. Applied Catalysis A: General, 2014, 470, 420-426.	2.2	62
86	Upgrading of bio-oil derived from biomass constituents over hierarchical unilamellar mesoporous MFI nanosheets. Catalysis Today, 2014, 232, 119-126.	2.2	66
87	Randomâ€Graft Polymerâ€Directed Synthesis of Inorganic Mesostructures with Ultrathin Frameworks. Angewandte Chemie - International Edition, 2014, 53, 5117-5121.	7.2	36
88	MFI zeolite nanosponges possessing uniform mesopores generated by bulk crystal seeding in the hierarchical surfactant-directed synthesis. Chemical Communications, 2014, 50, 4175-4177.	2.2	84
89	Mesoporous MFI Zeolite Nanosponge Supporting Cobalt Nanoparticles as a Fischer–Tropsch Catalyst with High Yield of Branched Hydrocarbons in the Gasoline Range. ACS Catalysis, 2014, 4, 3919-3927.	5.5	101
90	Bulk crystal seeding in the generation of mesopores by organosilane surfactants in zeolite synthesis. Journal of Materials Chemistry A, 2014, 2, 11905-11912.	5.2	50

#	Article	IF	CITATIONS
91	Probing the Catalytic Function of External Acid Sites Located on the MFI Nanosheet for Conversion of Methanol to Hydrocarbons. Catalysis Letters, 2014, 144, 1164-1169.	1.4	39
92	Two-Minute Assembly of Pristine Large-Area Graphene Based Films. Nano Letters, 2014, 14, 1388-1393.	4.5	92
93	Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA. Materials, 2013, 6, 2662-2688.	1.3	30
94	A review of fine structures of nanoporous materials as evidenced by microscopic methods. Microscopy (Oxford, England), 2013, 62, 109-146.	0.7	44
95	Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous and Mesoporous Materials, 2013, 166, 3-19.	2.2	420
96	Catalytic performance of sheet-like Fe/ZSM-5 zeolites for the selective oxidation of benzene with nitrous oxide. Journal of Catalysis, 2013, 299, 81-89.	3.1	87
97	Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking. Journal of Catalysis, 2013, 300, 70-80.	3.1	132
98	Ethanol-based synthesis of hierarchically porous carbon using nanocrystalline beta zeolite template for high-rate electrical double layer capacitor. Carbon, 2013, 60, 175-185.	5.4	57
99	Characterization of the Surface Acidity of MFI Zeolite Nanosheets by ³¹ P NMR of Adsorbed Phosphine Oxides and Catalytic Cracking of Decalin. ACS Catalysis, 2013, 3, 713-720.	5.5	153
100	n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: Effects of zeolite crystal thickness and platinum location. Journal of Catalysis, 2013, 301, 187-197.	3.1	146
101	External Surface Catalytic Sites of Surfactant-Tailored Nanomorphic Zeolites for Benzene Isopropylation to Cumene. ACS Catalysis, 2013, 3, 192-195.	5.5	110
102	The effect of MFI zeolite lamellar and related mesostructures on toluene disproportionation and alkylation. Catalysis Science and Technology, 2013, 3, 2119.	2.1	74
103	Microporous Aluminophosphate Nanosheets and Their Nanomorphic Zeolite Analogues Tailored by Hierarchical Structure-Directing Amines. Journal of the American Chemical Society, 2013, 135, 8806-8809.	6.6	111
104	Capping with Multivalent Surfactants for Zeolite Nanocrystal Synthesis. Angewandte Chemie - International Edition, 2013, 52, 10014-10017.	7.2	85
105	Catalytic Conversion of Waste Particle Board to Bio-Oil Using Nanoporous Catalyst. Journal of Nanoscience and Nanotechnology, 2012, 12, 5367-5372.	0.9	9
106	Study of Argon Gas Adsorption in Ordered Mesoporous MFI Zeolite Framework. Journal of Physical Chemistry C, 2012, 116, 25300-25308.	1.5	19
107	Zeolite Synthesis Using Hierarchical Structure-Directing Surfactants: Retaining Porous Structure of Initial Synthesis Gel and Precursors. Chemistry of Materials, 2012, 24, 2733-2738.	3.2	83
108	Exploring the hierarchy of transport phenomena in hierarchical pore systems by NMR diffusion measurement. Microporous and Mesoporous Materials, 2012, 164, 273-279.	2.2	61

#	Article	IF	CITATIONS
109	Exploring Mass Transfer in Mesoporous Zeolites by NMR Diffusometry. Materials, 2012, 5, 699-720.	1.3	18
110	Efficient Functional Delivery of siRNA using Mesoporous Silica Nanoparticles with Ultralarge Pores. Small, 2012, 8, 1752-1761.	5.2	154
111	Zeolite nanosheet of a single-pore thickness generated by a zeolite-structure-directing surfactant. Journal of Materials Chemistry, 2012, 22, 4637.	6.7	86
112	A Standâ€Alone Mesoporous Crystal Structure Model from in situ Xâ€ray Diffraction: Nitrogen Adsorption on 3 D Cagelike Mesoporous Silica SBAâ€16. Chemistry - A European Journal, 2012, 18, 10300-10311.	1.7	20
113	Intracrystalline Diffusion in Mesoporous Zeolites. ChemPhysChem, 2012, 13, 1495-1499.	1.0	41
114	Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel, 2012, 97, 379-384.	3.4	112
115	Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. Journal of Catalysis, 2012, 288, 115-123.	3.1	134
116	Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151, 107-112.	2.2	100
117	MFI Titanosilicate Nanosheets with Single-Unit-Cell Thickness as an Oxidation Catalyst Using Peroxides. ACS Catalysis, 2011, 1, 901-907.	5.5	206
118	Hierarchically Structure-Directing Effect of Multi-Ammonium Surfactants for the Generation of MFI Zeolite Nanosheets. Chemistry of Materials, 2011, 23, 5131-5137.	3.2	195
119	Surfactant-Directed Zeolite Nanosheets: A High-Performance Catalyst for Gas-Phase Beckmann Rearrangement. ACS Catalysis, 2011, 1, 337-341.	5.5	105
120	Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery. ACS Nano, 2011, 5, 3568-3576.	7.3	328
121	Disordered Assembly of MFI Zeolite Nanosheets with a Large Volume of Intersheet Mesopores. Chemistry of Materials, 2011, 23, 1273-1279.	3.2	165
122	Structural Characterization of Nanosheet-type MFI Zeolite. Nihon Kessho Gakkaishi, 2011, 53, 135-140.	0.0	0
123	Catalytic Pyrolysis of Oil Fractions Separated from Food Waste Leachate Over Nanoporous Acid Catalysts. Journal of Nanoscience and Nanotechnology, 2011, 11, 6167-6171.	0.9	4
124	Mesopore generation by organosilane surfactant during LTA zeolite crystallization, investigated by high-resolution SEM and Monte Carlo simulation. Solid State Sciences, 2011, 13, 750-756.	1.5	38
125	Mesoporous Polymeric Support Retaining High Catalytic Activity of Polyoxotungstate for Liquidâ€Phase Olefin Epoxidation using H ₂ O ₂ . ChemCatChem, 2011, 3, 1435-1438.	1.8	32
126	Directing Zeolite Structures into Hierarchically Nanoporous Architectures. Science, 2011, 333, 328-332.	6.0	750

#	Article	IF	CITATIONS
127	Study of hydrogen physisorption on nanoporous carbon materials of different origin. International Journal of Hydrogen Energy, 2011, 36, 7937-7943.	3.8	24
128	Dynamics of water diffusion in mesoporous zeolites. Microporous and Mesoporous Materials, 2011, 142, 236-244.	2.2	62
129	Application of Hierarchical MFI Zeolite for the Catalytic Pyrolysis of Japanese Larch. Journal of Nanoscience and Nanotechnology, 2010, 10, 355-359.	0.9	40
130	Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. Journal of Catalysis, 2010, 269, 219-228.	3.1	560
131	Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites. Applied Catalysis B: Environmental, 2010, 95, 365-373.	10.8	262
132	Highly Stable Pt/Ordered Graphitic Mesoporous Carbon Electrocatalysts for Oxygen Reduction. Journal of Physical Chemistry C, 2010, 114, 10796-10805.	1.5	90
133	Template synthesis of ordered mesoporous organic polymeric materials using hydrophobic silylated KIT-6 mesoporous silica. Journal of Materials Chemistry, 2010, 20, 5544.	6.7	53
134	Pillared MFI Zeolite Nanosheets of a Single-Unit-Cell Thickness. Journal of the American Chemical Society, 2010, 132, 4169-4177.	6.6	466
135	Large pore phenylene-bridged mesoporous organosilica with bicontinuous cubic Ia3̄d (KIT-6) mesostructure. Journal of Materials Chemistry, 2010, 20, 8257.	6.7	23
136	CrAPO-5 catalysts having a hierarchical pore structure for the selective oxidation of tetralin to 1-tetralone. New Journal of Chemistry, 2010, 34, 2971.	1.4	26
137	Mesoporous sodalite: A novel, stable solid catalyst for base-catalyzed organic transformations. Journal of Catalysis, 2009, 264, 88-92.	3.1	87
138	Expanded Heterogeneous Suzuki–Miyaura Coupling Reactions of Aryl and Heteroaryl Chlorides under Mild Conditions. Advanced Synthesis and Catalysis, 2009, 351, 2912-2920.	2.1	85
139	High Catalytic Activity of Palladium(II)â€Exchanged Mesoporous Sodalite and NaA Zeolite for Bulky Aryl Coupling Reactions: Reusability under Aerobic Conditions. Angewandte Chemie - International Edition, 2009, 48, 3673-3676.	7.2	148
140	Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461, 246-249.	13.7	1,925
141	A tricontinuous mesoporous system. Nature Chemistry, 2009, 1, 105-106.	6.6	14
142	Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution. Microporous and Mesoporous Materials, 2009, 124, 45-51.	2.2	70
143	The influence of metal loading and activation on mesoporous materials supported nickel phosphide hydrotreating catalysts. Applied Catalysis A: General, 2009, 365, 48-54.	2.2	39
144	The synthesis of a hierarchically porous BEA zeolite via pseudomorphic crystallization. Chemical Communications, 2009, , 2845.	2.2	73

#	Article	IF	CITATIONS
145	Cyclic diquaternary ammoniums for nanocrystalline BEA, MTW and MFI zeolites with intercrystalline mesoporosity. Journal of Materials Chemistry, 2009, 19, 6713.	6.7	71
146	Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chemical Communications, 2009, , 3627.	2.2	301
147	Generation of Mesoporosity in LTA Zeolites by Organosilane Surfactant for Rapid Molecular Transport in Catalytic Application. Chemistry of Materials, 2009, 21, 5664-5673.	3.2	193
148	Palladium acetate immobilized in a hierarchical MFI zeolite-supported ionic liquid: a highly active and recyclable catalyst for Suzuki reaction in water. Green Chemistry, 2009, 11, 309.	4.6	112
149	Organic functionalization of mesopore walls in hierarchically porous zeolites. Chemical Communications, 2009, , 74-76.	2.2	67
150	Acidity and catalytic activity of mesoporous ZSM-5 in comparison with zeolite ZSM-5, Al-MCM-41 and silica–alumina. Catalysis Today, 2008, 132, 38-45.	2.2	106
151	p-Aminophenol synthesis in an organic/aqueous system using Pt supported on mesoporous carbons. Applied Catalysis A: General, 2008, 337, 97-104.	2.2	73
152	SBA-15-supported nickel phosphide hydrotreating catalysts. Journal of Catalysis, 2008, 253, 119-131.	3.1	148
153	Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures. Journal of Catalysis, 2008, 254, 296-303.	3.1	215
154	Adsorption on Ordered Porous Carbons. , 2008, , 455-477.		0
155	High temperature treatment of ordered mesoporous carbons prepared by using various carbon precursors and ordered mesoporous silica templates. New Journal of Chemistry, 2008, 32, 981.	1.4	80
156	Argon Adsorption on MCM-41 Mesoporous Crystal Studied by In Situ Synchrotron Powder X-ray Diffraction. Journal of Physical Chemistry C, 2008, 112, 10803-10813.	1.5	54
157	Mesoporous carbons with KOH activated framework and their hydrogen adsorption. Journal of Materials Chemistry, 2007, 17, 4204.	6.7	127
158	Synthesis of sponge mesoporous silicas from lecithin/dodecylamine mixed-micelles in ethanol/water media: A route towards efficient biocatalysts. Microporous and Mesoporous Materials, 2007, 104, 103-114.	2.2	43
159	Synthesis of magnetically separable ordered mesoporous carbons using furfuryl alcohol and cobalt nitrate in a silica template. Journal of Materials Chemistry, 2006, 16, 3409.	6.7	62
160	Mesoporous polymer–silica catalysts for selective hydroxylation of phenol. Green Chemistry, 2006, 8, 144.	4.6	28
161	An Analytical Approach to Determine the Pore Shape and Size of MCM-41 Materials from X-ray Diffraction Data. Journal of Physical Chemistry B, 2006, 110, 10630-10635.	1.2	22
162	Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chemical Communications, 2006, , 4489.	2.2	282

#	Article	IF	CITATIONS
163	Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chemical Communications, 2006, , 4380.	2.2	170
164	Phase Domain of the CubicIm3Ì"mMesoporous Silica in the EO106PO70EO106â^'Butanolâ^'H2O System. Langmuir, 2006, 22, 440-445.	1.6	139
165	Design of bimetallic nanoparticles. International Journal of Nanotechnology, 2006, 3, 194.	0.1	4
166	Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5, 718-723.	13.3	1,079
167	Three-dimensional real-space crystallography of MCM-48 mesoporous silica revealed by scanning transmission electron tomography. Chemical Physics Letters, 2006, 418, 540-543.	1.2	49
168	Optimization of silica/surfactant ratio in MCM-41 synthesis. Studies in Surface Science and Catalysis, 2005, 156, 55-62.	1.5	10
169	The dynamics of Br(2Pj) formation in the photodissociation of vinyl and perfluorovinyl bromides. Journal of Chemical Physics, 2005, 122, 034308.	1.2	10
170	Adsorption and Structural Properties of Ordered Mesoporous Carbons Synthesized by Using Various Carbon Precursors and Ordered Siliceous P6mm and Ia3̄d Mesostructures as Templates. Journal of Physical Chemistry B, 2005, 109, 23263-23268.	1.2	92
171	MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure:Â Facile Synthesis Domain in a Ternary Triblock Copolymerâ^'Butanolâ^'Water System. Journal of the American Chemical Society, 2005, 127, 7601-7610.	6.6	681
172	Characterization of mesoporous carbons synthesized with SBA-16 silica template. Journal of Materials Chemistry, 2005, 15, 1560.	6.7	162
173	Controlled Polymerization in Mesoporous Silica toward the Design of Organicâ^'Inorganic Composite Nanoporous Materials. Journal of the American Chemical Society, 2005, 127, 1924-1932.	6.6	263
174	Nanostructured carbon materials synthesized from mesoporous silica crystals by replication. Studies in Surface Science and Catalysis, 2004, 148, 241-260.	1.5	61
175	Characterization of PtSn Nanoparticles in KL Zeolite and n-Hexane Aromatization Activity. Catalysis Letters, 2004, 97, 71-75.	1.4	14
176	Three-Dimensional Structure of Large-Pore Mesoporous Cubiclad Silica with Complementary Pores and Its Carbon Replica by Electron Crystallography. Angewandte Chemie - International Edition, 2004, 43, 5231-5234.	7.2	170
177	Transformation of highly ordered large pore silica mesophases (Fm3m, Im3m and p6mm) in a ternary triblock copolymer–butanol–water system. Chemical Communications, 2004, , 1536-1537.	2.2	109
178	Comprehensive Structure Analysis of Ordered Carbon Nanopipe Materials CMK-5 by X-ray Diffraction and Electron Microscopy. Chemistry of Materials, 2004, 16, 2274-2281.	3.2	55
179	Replication of Mesoporous Aluminosilicate Molecular Sieves (RMMs) with Zeolite Framework from Mesoporous Carbons (CMKs). Chemistry of Materials, 2004, 16, 3168-3175.	3.2	175
180	Tailoring the Pore Structure of SBA-16 Silica Molecular Sieve through the Use of Copolymer Blends and Control of Synthesis Temperature and Time. Journal of Physical Chemistry B, 2004, 108, 11480-11489.	1.2	333

Ryong Ryoo

#	Article	IF	CITATIONS
181	Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New Journal of Chemistry, 2003, 27, 73-79.	1.4	497
182	X-ray absorption and NMR spectroscopic investigations of zinc glutarates prepared from various zinc sources and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide. Journal of Catalysis, 2003, 218, 209-219.	3.1	50
183	Title is missing!. Angewandte Chemie, 2003, 115, 2232-2235.	1.6	13
184	Direct Observation of 3D Mesoporous Structure by Scanning Electron Microscopy (SEM): SBA-15 Silica and CMK-5 Carbon. Angewandte Chemie - International Edition, 2003, 42, 2182-2185.	7.2	196
185	A Synthetic Route to Ordered Mesoporous Carbon Materials with Graphitic Pore Walls. Angewandte Chemie - International Edition, 2003, 42, 4375-4379.	7.2	366
186	Pore structure and graphitic surface nature of ordered mesoporous carbons probed by low-pressure nitrogen adsorption. Microporous and Mesoporous Materials, 2003, 60, 139-149.	2.2	45
187	Ordered nanoporous polymer–carbon composites. Nature Materials, 2003, 2, 473-476.	13.3	169
188	Synthesis and Characterization of Hexagonally Ordered Carbon Nanopipes. Chemistry of Materials, 2003, 15, 2815-2823.	3.2	250
189	Benzoylthiourea-Modified Mesoporous Silica for Mercury(II) Removal. Langmuir, 2003, 19, 3031-3034.	1.6	165
190	Large Cage Face-Centered-CubicFm3mMesoporous Silica:Â Synthesis and Structure. Journal of Physical Chemistry B, 2003, 107, 14296-14300.	1.2	296
191	Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubesElectronic supplementary information (ESI) available: TEM images of mesoporous cubic silica and Pt networks, XRD patterns during formation of the cubic phase. See http://www.rsc.org/suppdata/cc/b3/b306504a/. Chemical Communications, 2003. , 2136.	2.2	1,286
192	Characterization of Regular and Plugged SBA-15 Silicas by Using Adsorption and Inverse Carbon Replication and Explanation of the Plug Formation Mechanism. Journal of Physical Chemistry B, 2003, 107, 2205-2213.	1.2	184
193	Surface and Pore Structures of CMK-5 Ordered Mesoporous Carbons by Adsorption and Surface Spectroscopy. Chemistry of Materials, 2003, 15, 3300-3307.	3.2	99
194	Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness. Chemical Communications, 2003, , 1340-1341.	2.2	297
195	Ordered mesoporous carbon molecular sieves with functionalized surfaces. Studies in Surface Science and Catalysis, 2003, , 37-40.	1.5	34
196	Surface and pore structures of CMK-5 ordered mesoporous carbons studied by nitrogen adsorption and surface spectroscopic methods. Studies in Surface Science and Catalysis, 2003, 146, 335-338.	1.5	0
197	Preparation, characterization and catalytic activity of heteropolyacids supported on mesoporous silica and carbon. Studies in Surface Science and Catalysis, 2003, 146, 657-660.	1.5	6
198	Synthesis of mesoporous carbons with various pore diameters via control of pore wall thickness of mesoporous silicas. Studies in Surface Science and Catalysis, 2003, , 33-36.	1.5	4

#	Article	IF	CITATIONS
199	Structures of silica-mesoporous crystals and novel mesoporous carbon-networks synthesized within the pores. Studies in Surface Science and Catalysis, 2003, 146, 275-280.	1.5	5
200	Thermally induced structural changes in SBA-15 and MSU-H silicas and their implications for synthesis of ordered mesoporous carbons. Studies in Surface Science and Catalysis, 2003, , 49-52.	1.5	3
201	Friedel-crafts alkylation over Al-incorporated mesoporous honeycomb. Studies in Surface Science and Catalysis, 2003, 146, 669-672.	1.5	1
202	Regeneration of mesoporous inorganic materials using ordered mesoporous carbon as the template. Studies in Surface Science and Catalysis, 2003, 146, 53-56.	1.5	8
203	X-ray diffraction analysis of mesostructured materials by continuous density function technique. Studies in Surface Science and Catalysis, 2003, 146, 299-302.	1.5	16
204	Evidence for General Nature of Pore Interconnectivity in 2-Dimensional Hexagonal Mesoporous Silicas Prepared Using Block Copolymer Templates. Journal of Physical Chemistry B, 2002, 106, 4640-4646.	1.2	208
205	Framework Characterization of Mesostructured Carbon CMK-1 by X-ray Powder Diffraction and Electron Microscopy. Journal of Physical Chemistry B, 2002, 106, 12198-12202.	1.2	89
206	Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons with Various Pore Diameters. Journal of the American Chemical Society, 2002, 124, 1156-1157.	6.6	349
207	Structural Study of Mesoporous MCM-48 and Carbon Networks Synthesized in the Spaces of MCM-48 by Electron Crystallography. Journal of Physical Chemistry B, 2002, 106, 1256-1266.	1.2	342
208	Adsorption Properties of Templated Mesoporous Carbon (CMK-1) for Nitrogen and Supercritical MethaneExperiment and GCMC Simulation. Journal of Physical Chemistry B, 2002, 106, 6523-6528.	1.2	107
209	Detailed structure of the hexagonally packed mesostructured carbon material CMK-3. Carbon, 2002, 40, 2477-2481.	5.4	75
210	Surface chemistry of ordered mesoporous carbons. Carbon, 2002, 40, 2673-2683.	5.4	181
211	Synthesis of platinum networks with nanoscopic periodicity using mesoporous silica as template. Journal of Materials Chemistry, 2001, 11, 260-261.	6.7	101
212	Template Synthesis of Asymmetrically Mesostructured Platinum Networks. Journal of the American Chemical Society, 2001, 123, 1246-1247.	6.6	277
213	Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication. Chemical Communications, 2001, , 349-350.	2.2	170
214	Formation and Growth of a Nanosized RuIr Bimetallic Cluster Supported on NaY Zeolite. Journal of Physical Chemistry B, 2001, 105, 1293-1298.	1.2	4
215	Synthesis of Ordered and Disordered Silicas with Uniform Pores on the Border between Micropore and Mesopore Regions Using Short Double-Chain Surfactants. Journal of the American Chemical Society, 2001, 123, 1650-1657.	6.6	119
216	Anionic and Upper-Excited Fluorescence of C60Encapsulated in Y Zeolitic Nanocavity. Journal of Physical Chemistry B, 2001, 105, 4195-4199.	1.2	15

#	Article	IF	CITATIONS
217	Synthesis of ordered mesoporous carbon molecular sieves CMK-1. Microporous and Mesoporous Materials, 2001, 44-45, 153-158.	2.2	164
218	Comprehensive characterization of highly ordered MCM-41 silicas using nitrogen adsorption, thermogravimetry, X-ray diffraction and transmission electron microscopy. Microporous and Mesoporous Materials, 2001, 48, 127-134.	2.2	74
219	An HREM Study of Channel Structures in Mesoporous Silica SBA-15 and Platinum Wires Produced in the Channels. ChemPhysChem, 2001, 2, 229-231.	1.0	136
220	Effect of multivalent cations on agglomeration of Ru clusters supported on Y zeolite. Catalysis Letters, 2001, 71, 163-167.	1.4	2
221	Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 2001, 412, 169-172.	13.7	2,439
222	TEM Studies of Platinum Nanowires Fabricated in Mesoporous Silica MCM-41. Angewandte Chemie - International Edition, 2000, 39, 3107-3110.	7.2	213
223	Hydrothermal stability of MCM-48 improved by post-synthesis restructuring in salt solution. Microporous and Mesoporous Materials, 2000, 41, 119-127.	2.2	72
224	Skeletal isomerization of n-butenes to isobutene over acid-treated natural clinoptilolite zeolites. Applied Catalysis A: General, 2000, 196, 135-142.	2.2	21
225	Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature, 2000, 408, 449-453.	13.7	832
226	Aluminum Impregnation into Mesoporous Silica Molecular Sieves for Catalytic Application to Friedel–Crafts Alkylation. Journal of Catalysis, 2000, 195, 237-243.	3.1	112
227	Fine Structures of Zeolites and Mesoporous Materials. Microscopy and Microanalysis, 2000, 6, 8-9.	0.2	1
228	Determination of Pore Size and Pore Wall Structure of MCM-41 by Using Nitrogen Adsorption, Transmission Electron Microscopy, and X-ray Diffraction. Journal of Physical Chemistry B, 2000, 104, 292-301.	1.2	342
229	Characterization of the Porous Structure of SBA-15. Chemistry of Materials, 2000, 12, 1961-1968.	3.2	1,280
230	Block-Copolymer-Templated Ordered Mesoporous Silica:Â Array of Uniform Mesopores or Mesoporeâ^Micropore Network?. Journal of Physical Chemistry B, 2000, 104, 11465-11471.	1.2	631
231	Characterization of MCM-48 Silicas with Tailored Pore Sizes Synthesized via a Highly Efficient Procedure. Chemistry of Materials, 2000, 12, 1414-1421.	3.2	125
232	Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates. Journal of Physical Chemistry B, 2000, 104, 7960-7968.	1.2	333
233	Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. Journal of the American Chemical Society, 2000, 122, 10712-10713.	6.6	2,331
234	Title is missing!. Adsorption, 1999, 5, 313-317.	1.4	10

#	Article	IF	CITATIONS
235	Improvement of Hydrothermal Stability of Mesoporous Silica Using Salts:  Reinvestigation for Time-Dependent Effects. Journal of Physical Chemistry B, 1999, 103, 6200-6205.	1.2	156
236	Synthesis of highly ordered MCM-41 by micelle-packing control with mixed surfactants. Chemical Communications, 1999, , 1413-1414.	2.2	57
237	Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. Journal of Physical Chemistry B, 1999, 103, 7743-7746.	1.2	2,322
238	Energetically Favored Formation of MCM-48 from Cationicâ^'Neutral Surfactant Mixtures. Journal of Physical Chemistry B, 1999, 103, 7435-7440.	1.2	227
239	Characterization of High-Quality MCM-48 and SBA-1 Mesoporous Silicas. Chemistry of Materials, 1999, 11, 2568-2572.	3.2	103
240	Characterization of Highly Ordered MCM-41 Silicas Using X-ray Diffraction and Nitrogen Adsorption. Langmuir, 1999, 15, 5279-5284.	1.6	150
241	Synthesis and Pore Size Control of Cubic Mesoporous Silica SBA-1. Chemistry of Materials, 1999, 11, 487-491.	3.2	192
242	PdPt bimetallic cluster supported on kl zeolite probed with xenon adsorption measurement, EXAFS/XANES and n-Butane hydrogenolysis. Studies in Surface Science and Catalysis, 1999, 121, 295-300.	1.5	0
243	Investigation of Pt/γ-Al2O3Catalysts Prepared by Sol–Gel Method. Journal of Catalysis, 1998, 173, 295-303.	3.1	50
244	The reduction of dissolved oxygen by hydrazine over platinum catalyst supported on disordered mesoporous materials. Korean Journal of Chemical Engineering, 1998, 15, 611-614.	1.2	10
245	Mesocrystal engineering using non-bonded interaction to obtain optically transparent mesoporous silica films and plates with uniform orientation. Microporous and Mesoporous Materials, 1998, 21, 235-243.	2.2	19
246	Synthesis of MCM-48 single crystals. Chemical Communications, 1998, , 259-260.	2.2	213
247	Synthesis and hydrothermal stability of a disordered mesoporous molecular sieve. Studies in Surface Science and Catalysis, 1997, , 45-52.	1.5	39
248	Generalised route to the preparation of mesoporous metallosilicates via post-synthetic metal implantation. Chemical Communications, 1997, , 2225-2226.	2.2	194
249	Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process. Journal of Physical Chemistry B, 1997, 101, 317-320.	1.2	304
250	Imaging the Distribution of Framework Aluminum in Mesoporous Molecular Sieve MCM-41. Chemistry of Materials, 1997, 9, 1607-1613.	3.2	85
251	Optically Transparent, Single-Crystal-Like Oriented Mesoporous Silica Films and Plates. Journal of Physical Chemistry B, 1997, 101, 10610-10613.	1.2	99
252	Monitoring of the structure of siliceous mesoporous molecular sieves tailored using different synthesis conditions. Microporous Materials, 1997, 12, 93-106.	1.6	64

#	Article	IF	CITATIONS
253	Mesoporous molecular sieve with binary transition metal (Zr-Cr) oxide framework. Catalysis Today, 1997, 38, 221-226.	2.2	23
254	Imaging the channels in mesoporous molecular sieves with platinum. Chemical Communications, 1996, , 2467.	2.2	65
255	Disordered Molecular Sieve with Branched Mesoporous Channel Network. The Journal of Physical Chemistry, 1996, 100, 17718-17721.	2.9	451
256	A new synthesis procedure for titanium-containing zeolites under strong alkaline conditions and the catalytic activity for partial oxidation and photocatalytic decomposition. Catalysis Letters, 1996, 37, 217-221.	1.4	11
257	Preparation of nanosize Pt clusters using ion exchange of Pt(NH3) 4 2+ inside mesoporous channel of MCM-41. Catalysis Letters, 1996, 37, 29-33.	1.4	51
258	Investigation of the Platinum Cluster Size and Location on Zeolite KL with 129Xe NMR, XAFS, and Xenon Adsorption. The Journal of Physical Chemistry, 1996, 100, 4996-5003.	2.9	39
259	129Xe Nuclear magnetic resonance study on a solid-state defect in HZSM-5 zeolite. Microporous Materials, 1995, 4, 59-64.	1.6	12
260	Bond density and physicochemical properties of a hydrogenated silicon nitride film. Journal of Physics and Chemistry of Solids, 1995, 56, 293-299.	1.9	22
261	Ru Clusters with Controlled Sizes in NaY Zeolite: Catalytic Activity for Ethane Hydrogenolysis and XANES. Journal of Catalysis, 1995, 153, 232-238.	3.1	14
262	Application of129Xe NMR spectroscopy and EXAFS to probe the formation of a bimetallic cluster in zeolite Y. Applied Magnetic Resonance, 1995, 8, 475-488.	0.6	9
263	Combined DRS–RS–EXAFS–XANES–TPR study of supported chromium catalysts. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3245-3253.	1.7	188
264	Annealing Effects in Hydrogenated Silicon Nitride Films during High Energy Ion Beam Irradiation. Journal of the Electrochemical Society, 1995, 142, 3210-3214.	1.3	3
265	Ion Exchange and Thermal Stability of MCM-41. The Journal of Physical Chemistry, 1995, 99, 16742-16747.	2.9	307
266	Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium. Journal of the Chemical Society Chemical Communications, 1995, , 711.	2.0	220
267	A 129Xe NMR Spectroscopic Technique To Probe Exclusively the Internal Surface of Zeolite Crystallites by Coating of the External Surface. The Journal of Physical Chemistry, 1994, 98, 7101-7103.	2.9	14
268	Clustering of Platinum Atoms in Zeolite EMT Supercage: Comprehensive Physicochemical Characterization. Studies in Surface Science and Catalysis, 1994, 84, 765-772.	1.5	10
269	129Xe n.m.r. of Y3+-, La3+-, and Ce3+-exchanged X zeolites. Zeolites, 1994, 14, 427-432.	0.9	47
270	A study on the photophysical properties of anthracene in zeolite. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 80, 333-339.	2.0	13

#	Article	IF	CITATIONS
271	Preparation of Iridium Clusters in Zeolite Y via Cation Exchange: EXAFS, Xenon Adsorption, and 129Xe NMR Studies. Journal of Catalysis, 1994, 149, 61-69.	3.1	22
272	Characterization of bimetallic NaY-supported Pt-Pd catalyst by EXAFS, TEM and TPR. Catalysis Letters, 1994, 29, 91-103.	1.4	35
273	XANES and EXAFS study of a platinum phthalocyanine. Journal of the Chemical Society Chemical Communications, 1994, , 785.	2.0	8
274	Chemisorption of H2 on supported Pt clusters probed by129Xe NMR. Catalysis Letters, 1993, 17, 273-283.	1.4	15
275	Xenon-129 NMR spectrum of xenon in the .alphacage of zeolite A during hydration and ion exchange. The Journal of Physical Chemistry, 1993, 97, 4124-4127.	2.9	11
276	EXAFS and Catalytic Activity of AgPt Bimetallic Cluster Supported on NaY Zeolite. Japanese Journal of Applied Physics, 1993, 32, 475.	0.8	10
277	Formation and growth of a ruthenium cluster in a Y zeolite supercage probed by xenon-129 NMR spectroscopy and xenon adsorption measurements. The Journal of Physical Chemistry, 1992, 96, 9922-9927.	2.9	41
278	Application of the xenon-adsorption method for the study of metal cluster formation and growth on Y zeolite. Journal of the American Chemical Society, 1992, 114, 76-82.	6.6	81
279	Formation of small Pt-Ir bimetallic clusters in NaY zeolite probed with 129Xe NMR spectroscopy and ethane hydrogenolysis. Journal of Catalysis, 1992, 137, 357-367.	3.1	25
280	Characterization of zeolite-supported Pt-Cu bimetallic catalyst by xenon-129 NMR and EXAFS. Journal of Catalysis, 1992, 133, 191-201.	3.1	34
281	Anion binding properties of poly(vinylpyrrolidone) in aqueous solution studied by halide NMR spectroscopy. Macromolecules, 1991, 24, 1727-1730.	2.2	53
282	Xenon-129 NMR spectroscopy of xenon gas adsorbed on amorphous carbons. The Journal of Physical Chemistry, 1991, 95, 3767-3771.	2.9	37
283	Formation of a small palladium cluster by anchoring on a multivalent cation in a zeolite supercage studied by xenon adsorption. The Journal of Physical Chemistry, 1991, 95, 8546-8552.	2.9	28
284	Critical ion concentrations for clusters in sodium sulfonated polystyrene lonomers. Polymer Engineering and Science, 1991, 31, 873-878.	1.5	9
285	129Xe NMR to probe microscopic mixing state of composite catalysts. Catalysis Letters, 1990, 7, 417-422.	1.4	11
286	31P, 27Al, and 129Xe NMR study of phosphorus-impregnated HZSM-5 zeolite catalysts. Journal of Catalysis, 1990, 124, 224-230.	3.1	57
287	129Xe NMR proof for the distribution of platinum species during Pt/NaY preparation by H2PtCl6 impregnation and Pt(NH3)42+ cation exchange methods. Journal of Catalysis, 1990, 123, 375-382.	3.1	29
288	Macroscopic or microscopic information of Y zeolite from 129Xe n.m.r. line splitting. Zeolites, 1990, 10, 790-793.	0.9	33

#	Article	IF	CITATIONS
289	lodine-127 and potassium-39 NMR study of the interaction of ions with water-soluble polymers. Macromolecules, 1990, 23, 1671-1675.	2.2	29
290	Molecular motions of tactic poly(2-hydroxyethyl methacrylate) in solutions studied by 13C-NMR relaxation measurement. Journal of Polymer Science Part A, 1989, 27, 1383-1399.	2.5	5
291	Atomic and electronic structure and chemical reactivity of metal clusters. Ultramicroscopy, 1986, 20, 125-133.	0.8	40
292	Thermodynamic properties of liquid carbon. Carbon, 1985, 23, 481-485.	5.4	2
293	Synthesis of ordered nanoporous carbons using mesoporous template and their perspectives. , 0, , .		0
294	Nanoporous 3D Graphene-like Zeolite-Templated Carbon for High-Affinity Separation of Xenon from Krypton. ACS Applied Nano Materials, 0, , .	2.4	6