Ryong Ryoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7203651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 2001, 412, 169-172.	27.8	2,439
2	Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. Journal of the American Chemical Society, 2000, 122, 10712-10713.	13.7	2,331
3	Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. Journal of Physical Chemistry B, 1999, 103, 7743-7746.	2.6	2,322
4	Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461, 246-249.	27.8	1,925
5	Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubesElectronic supplementary information (ESI) available: TEM images of mesoporous cubic silica and Pt networks, XRD patterns during formation of the cubic phase. See http://www.rsc.org/suppdata/cc/b3/b306504a/. Chemical Communications. 2003 2136.	4.1	1,286
6	Characterization of the Porous Structure of SBA-15. Chemistry of Materials, 2000, 12, 1961-1968.	6.7	1,280
7	Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5, 718-723.	27.5	1,079
8	Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature, 2000, 408, 449-453.	27.8	832
9	Directing Zeolite Structures into Hierarchically Nanoporous Architectures. Science, 2011, 333, 328-332.	12.6	750
10	MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure:Â Facile Synthesis Domain in a Ternary Triblock Copolymerâ^'Butanolâ^'Water System. Journal of the American Chemical Society, 2005, 127, 7601-7610.	13.7	681
11	Block-Copolymer-Templated Ordered Mesoporous Silica:Â Array of Uniform Mesopores or Mesoporeâ°'Micropore Network?. Journal of Physical Chemistry B, 2000, 104, 11465-11471.	2.6	631
12	Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. Journal of Catalysis, 2010, 269, 219-228.	6.2	560
13	Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis. New Journal of Chemistry, 2003, 27, 73-79.	2.8	497
14	Pillared MFI Zeolite Nanosheets of a Single-Unit-Cell Thickness. Journal of the American Chemical Society, 2010, 132, 4169-4177.	13.7	466
15	Disordered Molecular Sieve with Branched Mesoporous Channel Network. The Journal of Physical Chemistry, 1996, 100, 17718-17721.	2.9	451
16	Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous and Mesoporous Materials, 2013, 166, 3-19.	4.4	420
17	A Synthetic Route to Ordered Mesoporous Carbon Materials with Graphitic Pore Walls. Angewandte Chemie - International Edition, 2003, 42, 4375-4379.	13.8	366
18	Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons with Various Pore Diameters. Journal of the American Chemical Society, 2002, 124, 1156-1157.	13.7	349

#	Article	IF	CITATIONS
19	Determination of Pore Size and Pore Wall Structure of MCM-41 by Using Nitrogen Adsorption, Transmission Electron Microscopy, and X-ray Diffraction. Journal of Physical Chemistry B, 2000, 104, 292-301.	2.6	342
20	Structural Study of Mesoporous MCM-48 and Carbon Networks Synthesized in the Spaces of MCM-48 by Electron Crystallography. Journal of Physical Chemistry B, 2002, 106, 1256-1266.	2.6	342
21	Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates. Journal of Physical Chemistry B, 2000, 104, 7960-7968.	2.6	333
22	Tailoring the Pore Structure of SBA-16 Silica Molecular Sieve through the Use of Copolymer Blends and Control of Synthesis Temperature and Time. Journal of Physical Chemistry B, 2004, 108, 11480-11489.	2.6	333
23	Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery. ACS Nano, 2011, 5, 3568-3576.	14.6	328
24	Ion Exchange and Thermal Stability of MCM-41. The Journal of Physical Chemistry, 1995, 99, 16742-16747.	2.9	307
25	Improvement of Hydrothermal Stability of MCM-41 Using Salt Effects during the Crystallization Process. Journal of Physical Chemistry B, 1997, 101, 317-320.	2.6	304
26	Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chemical Communications, 2009, , 3627.	4.1	301
27	Facile synthesis of high quality mesoporous SBA-15 with enhanced control of the porous network connectivity and wall thickness. Chemical Communications, 2003, , 1340-1341.	4.1	297
28	Large Cage Face-Centered-CubicFm3mMesoporous Silica:Â Synthesis and Structure. Journal of Physical Chemistry B, 2003, 107, 14296-14300.	2.6	296
29	Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chemical Communications, 2006, , 4489.	4.1	282
30	Template Synthesis of Asymmetrically Mesostructured Platinum Networks. Journal of the American Chemical Society, 2001, 123, 1246-1247.	13.7	277
31	Controlled Polymerization in Mesoporous Silica toward the Design of Organicâ ^{~,} Inorganic Composite Nanoporous Materials. Journal of the American Chemical Society, 2005, 127, 1924-1932.	13.7	263
32	Highly valuable chemicals production from catalytic upgrading of radiata pine sawdust-derived pyrolytic vapors over mesoporous MFI zeolites. Applied Catalysis B: Environmental, 2010, 95, 365-373.	20.2	262
33	Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature, 2016, 535, 131-135.	27.8	253
34	Synthesis and Characterization of Hexagonally Ordered Carbon Nanopipes. Chemistry of Materials, 2003, 15, 2815-2823.	6.7	250
35	Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature, 2020, 585, 221-224.	27.8	233
36	Energetically Favored Formation of MCM-48 from Cationicâ^'Neutral Surfactant Mixtures. Journal of Physical Chemistry B, 1999, 103, 7435-7440.	2.6	227

#	Article	IF	CITATIONS
37	Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium. Journal of the Chemical Society Chemical Communications, 1995, , 711.	2.0	220
38	Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures. Journal of Catalysis, 2008, 254, 296-303.	6.2	215
39	Synthesis of MCM-48 single crystals. Chemical Communications, 1998, , 259-260.	4.1	213
40	TEM Studies of Platinum Nanowires Fabricated in Mesoporous Silica MCM-41. Angewandte Chemie - International Edition, 2000, 39, 3107-3110.	13.8	213
41	Evidence for General Nature of Pore Interconnectivity in 2-Dimensional Hexagonal Mesoporous Silicas Prepared Using Block Copolymer Templates. Journal of Physical Chemistry B, 2002, 106, 4640-4646.	2.6	208
42	Direct observation of bond formation in solution with femtosecond X-ray scattering. Nature, 2015, 518, 385-389.	27.8	207
43	MFI Titanosilicate Nanosheets with Single-Unit-Cell Thickness as an Oxidation Catalyst Using Peroxides. ACS Catalysis, 2011, 1, 901-907.	11.2	206
44	Direct Observation of 3D Mesoporous Structure by Scanning Electron Microscopy (SEM): SBA-15 Silica and CMK-5 Carbon. Angewandte Chemie - International Edition, 2003, 42, 2182-2185.	13.8	196
45	Hierarchically Structure-Directing Effect of Multi-Ammonium Surfactants for the Generation of MFI Zeolite Nanosheets. Chemistry of Materials, 2011, 23, 5131-5137.	6.7	195
46	Generalised route to the preparation of mesoporous metallosilicates via post-synthetic metal implantation. Chemical Communications, 1997, , 2225-2226.	4.1	194
47	Generation of Mesoporosity in LTA Zeolites by Organosilane Surfactant for Rapid Molecular Transport in Catalytic Application. Chemistry of Materials, 2009, 21, 5664-5673.	6.7	193
48	Synthesis and Pore Size Control of Cubic Mesoporous Silica SBA-1. Chemistry of Materials, 1999, 11, 487-491.	6.7	192
49	Combined DRS–RS–EXAFS–XANES–TPR study of supported chromium catalysts. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3245-3253.	1.7	188
50	Characterization of Regular and Plugged SBA-15 Silicas by Using Adsorption and Inverse Carbon Replication and Explanation of the Plug Formation Mechanism. Journal of Physical Chemistry B, 2003, 107, 2205-2213.	2.6	184
51	Surface chemistry of ordered mesoporous carbons. Carbon, 2002, 40, 2673-2683.	10.3	181
52	Replication of Mesoporous Aluminosilicate Molecular Sieves (RMMs) with Zeolite Framework from Mesoporous Carbons (CMKs). Chemistry of Materials, 2004, 16, 3168-3175.	6.7	175
53	Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication. Chemical Communications, 2001, , 349-350.	4.1	170
54	Three-Dimensional Structure of Large-Pore Mesoporous Cubiclad Silica with Complementary Pores and Its Carbon Replica by Electron Crystallography. Angewandte Chemie - International Edition, 2004, 43, 5231-5234.	13.8	170

#	Article	IF	CITATIONS
55	Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chemical Communications, 2006, , 4380.	4.1	170
56	Ordered nanoporous polymer–carbon composites. Nature Materials, 2003, 2, 473-476.	27.5	169
57	Benzoylthiourea-Modified Mesoporous Silica for Mercury(II) Removal. Langmuir, 2003, 19, 3031-3034.	3.5	165
58	Disordered Assembly of MFI Zeolite Nanosheets with a Large Volume of Intersheet Mesopores. Chemistry of Materials, 2011, 23, 1273-1279.	6.7	165
59	Synthesis of ordered mesoporous carbon molecular sieves CMK-1. Microporous and Mesoporous Materials, 2001, 44-45, 153-158.	4.4	164
60	Characterization of mesoporous carbons synthesized with SBA-16 silica template. Journal of Materials Chemistry, 2005, 15, 1560.	6.7	162
61	Improvement of Hydrothermal Stability of Mesoporous Silica Using Salts:  Reinvestigation for Time-Dependent Effects. Journal of Physical Chemistry B, 1999, 103, 6200-6205.	2.6	156
62	Efficient Functional Delivery of siRNA using Mesoporous Silica Nanoparticles with Ultralarge Pores. Small, 2012, 8, 1752-1761.	10.0	154
63	Characterization of the Surface Acidity of MFI Zeolite Nanosheets by ³¹ P NMR of Adsorbed Phosphine Oxides and Catalytic Cracking of Decalin. ACS Catalysis, 2013, 3, 713-720.	11.2	153
64	Characterization of Highly Ordered MCM-41 Silicas Using X-ray Diffraction and Nitrogen Adsorption. Langmuir, 1999, 15, 5279-5284.	3.5	150
65	SBA-15-supported nickel phosphide hydrotreating catalysts. Journal of Catalysis, 2008, 253, 119-131.	6.2	148
66	High Catalytic Activity of Palladium(II)â€Exchanged Mesoporous Sodalite and NaA Zeolite for Bulky Aryl Coupling Reactions: Reusability under Aerobic Conditions. Angewandte Chemie - International Edition, 2009, 48, 3673-3676.	13.8	148
67	n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: Effects of zeolite crystal thickness and platinum location. Journal of Catalysis, 2013, 301, 187-197.	6.2	146
68	Phase Domain of the CubicIm3Ì"mMesoporous Silica in the EO106PO70EO106â^'Butanolâ^'H2O System. Langmuir, 2006, 22, 440-445.	3.5	139
69	An HREM Study of Channel Structures in Mesoporous Silica SBA-15 and Platinum Wires Produced in the Channels. ChemPhysChem, 2001, 2, 229-231.	2.1	136
70	Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. Journal of Catalysis, 2012, 288, 115-123.	6.2	134
71	Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking. Journal of Catalysis, 2013, 300, 70-80.	6.2	132
72	Mesoporous carbons with KOH activated framework and their hydrogen adsorption. Journal of Materials Chemistry, 2007, 17, 4204.	6.7	127

#	Article	IF	CITATIONS
73	Characterization of MCM-48 Silicas with Tailored Pore Sizes Synthesized via a Highly Efficient Procedure. Chemistry of Materials, 2000, 12, 1414-1421.	6.7	125
74	Synthesis of Ordered and Disordered Silicas with Uniform Pores on the Border between Micropore and Mesopore Regions Using Short Double-Chain Surfactants. Journal of the American Chemical Society, 2001, 123, 1650-1657.	13.7	119
75	Aluminum Impregnation into Mesoporous Silica Molecular Sieves for Catalytic Application to Friedel–Crafts Alkylation. Journal of Catalysis, 2000, 195, 237-243.	6.2	112
76	Palladium acetate immobilized in a hierarchical MFI zeolite-supported ionic liquid: a highly active and recyclable catalyst for Suzuki reaction in water. Green Chemistry, 2009, 11, 309.	9.0	112
77	Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel, 2012, 97, 379-384.	6.4	112
78	Microporous Aluminophosphate Nanosheets and Their Nanomorphic Zeolite Analogues Tailored by Hierarchical Structure-Directing Amines. Journal of the American Chemical Society, 2013, 135, 8806-8809.	13.7	111
79	External Surface Catalytic Sites of Surfactant-Tailored Nanomorphic Zeolites for Benzene Isopropylation to Cumene. ACS Catalysis, 2013, 3, 192-195.	11.2	110
80	Transformation of highly ordered large pore silica mesophases (Fm3m, Im3m and p6mm) in a ternary triblock copolymer–butanol–water system. Chemical Communications, 2004, , 1536-1537.	4.1	109
81	Adsorption Properties of Templated Mesoporous Carbon (CMK-1) for Nitrogen and Supercritical MethaneExperiment and GCMC Simulation. Journal of Physical Chemistry B, 2002, 106, 6523-6528.	2.6	107
82	Acidity and catalytic activity of mesoporous ZSM-5 in comparison with zeolite ZSM-5, Al-MCM-41 and silica–alumina. Catalysis Today, 2008, 132, 38-45.	4.4	106
83	Surfactant-Directed Zeolite Nanosheets: A High-Performance Catalyst for Gas-Phase Beckmann Rearrangement. ACS Catalysis, 2011, 1, 337-341.	11.2	105
84	Characterization of High-Quality MCM-48 and SBA-1 Mesoporous Silicas. Chemistry of Materials, 1999, 11, 2568-2572.	6.7	103
85	Synthesis of platinum networks with nanoscopic periodicity using mesoporous silica as template. Journal of Materials Chemistry, 2001, 11, 260-261.	6.7	101
86	Mesoporous MFI Zeolite Nanosponge Supporting Cobalt Nanoparticles as a Fischer–Tropsch Catalyst with High Yield of Branched Hydrocarbons in the Gasoline Range. ACS Catalysis, 2014, 4, 3919-3927.	11.2	101
87	Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151, 107-112.	4.4	100
88	Optically Transparent, Single-Crystal-Like Oriented Mesoporous Silica Films and Plates. Journal of Physical Chemistry B, 1997, 101, 10610-10613.	2.6	99
89	Surface and Pore Structures of CMK-5 Ordered Mesoporous Carbons by Adsorption and Surface Spectroscopy. Chemistry of Materials, 2003, 15, 3300-3307.	6.7	99
90	Ultrafast charge transfer coupled with lattice phonons in two-dimensional covalent organic frameworks. Nature Communications, 2019, 10, 1873.	12.8	93

#	Article	IF	CITATIONS
91	Adsorption and Structural Properties of Ordered Mesoporous Carbons Synthesized by Using Various Carbon Precursors and Ordered Siliceous P6mm and Ia3ì,,d Mesostructures as Templates. Journal of Physical Chemistry B, 2005, 109, 23263-23268.	2.6	92
92	Two-Minute Assembly of Pristine Large-Area Graphene Based Films. Nano Letters, 2014, 14, 1388-1393.	9.1	92
93	Highly Stable Pt/Ordered Graphitic Mesoporous Carbon Electrocatalysts for Oxygen Reduction. Journal of Physical Chemistry C, 2010, 114, 10796-10805.	3.1	90
94	Framework Characterization of Mesostructured Carbon CMK-1 by X-ray Powder Diffraction and Electron Microscopy. Journal of Physical Chemistry B, 2002, 106, 12198-12202.	2.6	89
95	Mesoporous sodalite: A novel, stable solid catalyst for base-catalyzed organic transformations. Journal of Catalysis, 2009, 264, 88-92.	6.2	87
96	Catalytic performance of sheet-like Fe/ZSM-5 zeolites for the selective oxidation of benzene with nitrous oxide. Journal of Catalysis, 2013, 299, 81-89.	6.2	87
97	Zeolite nanosheet of a single-pore thickness generated by a zeolite-structure-directing surfactant. Journal of Materials Chemistry, 2012, 22, 4637.	6.7	86
98	Imaging the Distribution of Framework Aluminum in Mesoporous Molecular Sieve MCM-41. Chemistry of Materials, 1997, 9, 1607-1613.	6.7	85
99	Expanded Heterogeneous Suzuki–Miyaura Coupling Reactions of Aryl and Heteroaryl Chlorides under Mild Conditions. Advanced Synthesis and Catalysis, 2009, 351, 2912-2920.	4.3	85
100	Capping with Multivalent Surfactants for Zeolite Nanocrystal Synthesis. Angewandte Chemie - International Edition, 2013, 52, 10014-10017.	13.8	85
101	MFI zeolite nanosponges possessing uniform mesopores generated by bulk crystal seeding in the hierarchical surfactant-directed synthesis. Chemical Communications, 2014, 50, 4175-4177.	4.1	84
102	Zeolite Synthesis Using Hierarchical Structure-Directing Surfactants: Retaining Porous Structure of Initial Synthesis Gel and Precursors. Chemistry of Materials, 2012, 24, 2733-2738.	6.7	83
103	Application of the xenon-adsorption method for the study of metal cluster formation and growth on Y zeolite. Journal of the American Chemical Society, 1992, 114, 76-82.	13.7	81
104	High temperature treatment of ordered mesoporous carbons prepared by using various carbon precursors and ordered mesoporous silica templates. New Journal of Chemistry, 2008, 32, 981.	2.8	80
105	Boosting hot electron flux and catalytic activity at metal–oxide interfaces of PtCo bimetallic nanoparticles. Nature Communications, 2018, 9, 2235.	12.8	80
106	Supporting Nickel To Replace Platinum on Zeolite Nanosponges for Catalytic Hydroisomerization of <i>n</i> -Dodecane. ACS Catalysis, 2018, 8, 10545-10554.	11.2	76
107	Detailed structure of the hexagonally packed mesostructured carbon material CMK-3. Carbon, 2002, 40, 2477-2481.	10.3	75
108	Comprehensive characterization of highly ordered MCM-41 silicas using nitrogen adsorption, thermogravimetry, X-ray diffraction and transmission electron microscopy. Microporous and Mesoporous Materials, 2001, 48, 127-134.	4.4	74

#	Article	IF	CITATIONS
109	The effect of MFI zeolite lamellar and related mesostructures on toluene disproportionation and alkylation. Catalysis Science and Technology, 2013, 3, 2119.	4.1	74
110	Mesoporous MFI Zeolite Nanosponge as a High-Performance Catalyst in the Pechmann Condensation Reaction. ACS Catalysis, 2015, 5, 2596-2604.	11.2	74
111	p-Aminophenol synthesis in an organic/aqueous system using Pt supported on mesoporous carbons. Applied Catalysis A: General, 2008, 337, 97-104.	4.3	73
112	The synthesis of a hierarchically porous BEA zeolite via pseudomorphic crystallization. Chemical Communications, 2009, , 2845.	4.1	73
113	Hydrothermal stability of MCM-48 improved by post-synthesis restructuring in salt solution. Microporous and Mesoporous Materials, 2000, 41, 119-127.	4.4	72
114	Selective p-xylene production from biomass-derived dimethylfuran and ethylene over zeolite beta nanosponge catalysts. Applied Catalysis B: Environmental, 2016, 185, 100-109.	20.2	72
115	Cyclic diquaternary ammoniums for nanocrystalline BEA, MTW and MFI zeolites with intercrystalline mesoporosity. Journal of Materials Chemistry, 2009, 19, 6713.	6.7	71
116	Syntheses of high quality KIT-6 and SBA-15 mesoporous silicas using low-cost water glass, through rapid quenching of silicate structure in acidic solution. Microporous and Mesoporous Materials, 2009, 124, 45-51.	4.4	70
117	Organic functionalization of mesopore walls in hierarchically porous zeolites. Chemical Communications, 2009, , 74-76.	4.1	67
118	Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Progress in Solid State Chemistry, 2014, 42, 1-21.	7.2	66
119	Upgrading of bio-oil derived from biomass constituents over hierarchical unilamellar mesoporous MFI nanosheets. Catalysis Today, 2014, 232, 119-126.	4.4	66
120	Zeolite-templated nanoporous carbon for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 10388-10394.	10.3	66
121	Imaging the channels in mesoporous molecular sieves with platinum. Chemical Communications, 1996, , 2467.	4.1	65
122	Monitoring of the structure of siliceous mesoporous molecular sieves tailored using different synthesis conditions. Microporous Materials, 1997, 12, 93-106.	1.6	64
123	Facile synthesis of carbon dot-Au nanoraspberries and their application as high-performance counter electrodes in quantum dot-sensitized solar cells. Carbon, 2016, 96, 139-144.	10.3	63
124	Synthesis of magnetically separable ordered mesoporous carbons using furfuryl alcohol and cobalt nitrate in a silica template. Journal of Materials Chemistry, 2006, 16, 3409.	6.7	62
125	Dynamics of water diffusion in mesoporous zeolites. Microporous and Mesoporous Materials, 2011, 142, 236-244.	4.4	62
126	High catalytic performance of surfactant-directed nanocrystalline zeolites for liquid-phase Friedel–Crafts alkylation of benzene due to external surfaces. Applied Catalysis A: General, 2014, 470, 420-426.	4.3	62

#	Article	IF	CITATIONS
127	Nanostructured carbon materials synthesized from mesoporous silica crystals by replication. Studies in Surface Science and Catalysis, 2004, 148, 241-260.	1.5	61
128	Exploring the hierarchy of transport phenomena in hierarchical pore systems by NMR diffusion measurement. Microporous and Mesoporous Materials, 2012, 164, 273-279.	4.4	61
129	Co ₃ O ₄ nanosheets on zeolite-templated carbon as an efficient oxygen electrocatalyst for a zinc–air battery. Journal of Materials Chemistry A, 2019, 7, 9988-9996.	10.3	60
130	31P, 27Al, and 129Xe NMR study of phosphorus-impregnated HZSM-5 zeolite catalysts. Journal of Catalysis, 1990, 124, 224-230.	6.2	57
131	Synthesis of highly ordered MCM-41 by micelle-packing control with mixed surfactants. Chemical Communications, 1999, , 1413-1414.	4.1	57
132	Ethanol-based synthesis of hierarchically porous carbon using nanocrystalline beta zeolite template for high-rate electrical double layer capacitor. Carbon, 2013, 60, 175-185.	10.3	57
133	Comprehensive Structure Analysis of Ordered Carbon Nanopipe Materials CMK-5 by X-ray Diffraction and Electron Microscopy. Chemistry of Materials, 2004, 16, 2274-2281.	6.7	55
134	Argon Adsorption on MCM-41 Mesoporous Crystal Studied by In Situ Synchrotron Powder X-ray Diffraction. Journal of Physical Chemistry C, 2008, 112, 10803-10813.	3.1	54
135	Anion binding properties of poly(vinylpyrrolidone) in aqueous solution studied by halide NMR spectroscopy. Macromolecules, 1991, 24, 1727-1730.	4.8	53
136	Template synthesis of ordered mesoporous organic polymeric materials using hydrophobic silylated KIT-6 mesoporous silica. Journal of Materials Chemistry, 2010, 20, 5544.	6.7	53
137	Catalytic Synergy on PtNi Bimetal Catalysts Driven by Interfacial Intermediate Structures. ACS Catalysis, 2020, 10, 10459-10467.	11.2	53
138	Preparation of nanosize Pt clusters using ion exchange of Pt(NH3) 4 2+ inside mesoporous channel of MCM-41. Catalysis Letters, 1996, 37, 29-33.	2.6	51
139	Investigation of Pt/γ-Al2O3Catalysts Prepared by Sol–Gel Method. Journal of Catalysis, 1998, 173, 295-303.	6.2	50
140	X-ray absorption and NMR spectroscopic investigations of zinc glutarates prepared from various zinc sources and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide. Journal of Catalysis, 2003, 218, 209-219.	6.2	50
141	Bulk crystal seeding in the generation of mesopores by organosilane surfactants in zeolite synthesis. Journal of Materials Chemistry A, 2014, 2, 11905-11912.	10.3	50
142	Mesoporous MFI zeolites as high performance catalysts for Diels-Alder cycloaddition of bio-derived dimethylfuran and ethylene to renewable p-xylene. Applied Catalysis B: Environmental, 2017, 206, 490-500.	20.2	50
143	Three-dimensional real-space crystallography of MCM-48 mesoporous silica revealed by scanning transmission electron tomography. Chemical Physics Letters, 2006, 418, 540-543.	2.6	49
144	129Xe n.m.r. of Y3+-, La3+-, and Ce3+-exchanged X zeolites. Zeolites, 1994, 14, 427-432.	0.5	47

#	Article	IF	CITATIONS
145	PtZn Intermetallic Compound Nanoparticles in Mesoporous Zeolite Exhibiting High Catalyst Durability for Propane Dehydrogenation. ACS Catalysis, 2021, 11, 9233-9241.	11.2	46
146	Pore structure and graphitic surface nature of ordered mesoporous carbons probed by low-pressure nitrogen adsorption. Microporous and Mesoporous Materials, 2003, 60, 139-149.	4.4	45
147	A review of fine structures of nanoporous materials as evidenced by microscopic methods. Microscopy (Oxford, England), 2013, 62, 109-146.	1.5	44
148	Mesopore wall-catalyzed Friedel–Crafts acylation of bulky aromatic compounds in MFI zeolite nanosponge. Catalysis Today, 2015, 243, 103-108.	4.4	44
149	Confinement of Supported Metal Catalysts at High Loading in the Mesopore Network of Hierarchical Zeolites, with Access via the Microporous Windows. ACS Catalysis, 2018, 8, 876-879.	11.2	44
150	Synthesis of sponge mesoporous silicas from lecithin/dodecylamine mixed-micelles in ethanol/water media: A route towards efficient biocatalysts. Microporous and Mesoporous Materials, 2007, 104, 103-114.	4.4	43
151	MFI zeolite nanosheets with post-synthetic Ti grafting for catalytic epoxidation of bulky olefins using H ₂ O ₂ . Chemical Communications, 2015, 51, 13102-13105.	4.1	42
152	Formation and growth of a ruthenium cluster in a Y zeolite supercage probed by xenon-129 NMR spectroscopy and xenon adsorption measurements. The Journal of Physical Chemistry, 1992, 96, 9922-9927.	2.9	41
153	Intracrystalline Diffusion in Mesoporous Zeolites. ChemPhysChem, 2012, 13, 1495-1499.	2.1	41
154	Atomic and electronic structure and chemical reactivity of metal clusters. Ultramicroscopy, 1986, 20, 125-133.	1.9	40
155	Application of Hierarchical MFI Zeolite for the Catalytic Pyrolysis of Japanese Larch. Journal of Nanoscience and Nanotechnology, 2010, 10, 355-359.	0.9	40
156	Coâ€development of Crystalline and Mesoscopic Order in Mesostructured Zeolite Nanosheets. Angewandte Chemie - International Edition, 2015, 54, 927-931.	13.8	40
157	Investigation of the Platinum Cluster Size and Location on Zeolite KL with 129Xe NMR, XAFS, and Xenon Adsorption. The Journal of Physical Chemistry, 1996, 100, 4996-5003.	2.9	39
158	Synthesis and hydrothermal stability of a disordered mesoporous molecular sieve. Studies in Surface Science and Catalysis, 1997, , 45-52.	1.5	39
159	The influence of metal loading and activation on mesoporous materials supported nickel phosphide hydrotreating catalysts. Applied Catalysis A: General, 2009, 365, 48-54.	4.3	39
160	Probing the Catalytic Function of External Acid Sites Located on the MFI Nanosheet for Conversion of Methanol to Hydrocarbons. Catalysis Letters, 2014, 144, 1164-1169.	2.6	39
161	Mesopore generation by organosilane surfactant during LTA zeolite crystallization, investigated by high-resolution SEM and Monte Carlo simulation. Solid State Sciences, 2011, 13, 750-756.	3.2	38
162	Xenon-129 NMR spectroscopy of xenon gas adsorbed on amorphous carbons. The Journal of Physical Chemistry, 1991, 95, 3767-3771.	2.9	37

#	Article	IF	CITATIONS
163	Facile large-scale synthesis of three-dimensional graphene-like ordered microporous carbon via ethylene carbonization in CaX zeolite template. Carbon, 2017, 118, 517-523.	10.3	37
164	Oxygen activation on the interface between Pt nanoparticles and mesoporous defective TiO2 during CO oxidation. Journal of Chemical Physics, 2019, 151, 234716.	3.0	37
165	Randomâ€Graft Polymerâ€Directed Synthesis of Inorganic Mesostructures with Ultrathin Frameworks. Angewandte Chemie - International Edition, 2014, 53, 5117-5121.	13.8	36
166	Characterization of bimetallic NaY-supported Pt-Pd catalyst by EXAFS, TEM and TPR. Catalysis Letters, 1994, 29, 91-103.	2.6	35
167	Characterization of zeolite-supported Pt-Cu bimetallic catalyst by xenon-129 NMR and EXAFS. Journal of Catalysis, 1992, 133, 191-201.	6.2	34
168	Ordered mesoporous carbon molecular sieves with functionalized surfaces. Studies in Surface Science and Catalysis, 2003, , 37-40.	1.5	34
169	Variation of nitrogen species in zeolite-templated carbon by low-temperature carbonization of pyrrole and the effect on oxygen reduction activity. Journal of Materials Chemistry A, 2019, 7, 8353-8360.	10.3	34
170	Macroscopic or microscopic information of Y zeolite from 129Xe n.m.r. line splitting. Zeolites, 1990, 10, 790-793.	0.5	33
171	Cooperative Structure Direction of Diammonium Surfactants and Sodium Ions to Generate MFI Zeolite Nanocrystals of Controlled Thickness. Chemistry of Materials, 2017, 29, 1752-1757.	6.7	33
172	Synthesis of mesoporous zeolites in fluoride media with structure-directing multiammonium surfactants. Microporous and Mesoporous Materials, 2017, 239, 19-27.	4.4	33
173	Mesoporous Polymeric Support Retaining High Catalytic Activity of Polyoxotungstate for Liquidâ€Phase Olefin Epoxidation using H ₂ O ₂ . ChemCatChem, 2011, 3, 1435-1438.	3.7	32
174	Template dissolution with NaOH–HCl in the synthesis of zeolite-templated carbons: Effects on oxygen functionalization andÂelectrical energy storage characteristics. Carbon, 2019, 155, 570-579.	10.3	32
175	Revisiting side-chain alkylation of toluene to styrene: Critical role of microporous structures in catalysts. Journal of Catalysis, 2019, 373, 25-36.	6.2	32
176	Diffusion Study by IR Micro-Imaging of Molecular Uptake and Release on Mesoporous Zeolites of Structure Type CHA and LTA. Materials, 2013, 6, 2662-2688.	2.9	30
177	Birth of a class of nanomaterial. Nature, 2019, 575, 40-41.	27.8	30
178	129Xe NMR proof for the distribution of platinum species during Pt/NaY preparation by H2PtCl6 impregnation and Pt(NH3)42+ cation exchange methods. Journal of Catalysis, 1990, 123, 375-382.	6.2	29
179	lodine-127 and potassium-39 NMR study of the interaction of ions with water-soluble polymers. Macromolecules, 1990, 23, 1671-1675.	4.8	29
180	Formation of a small palladium cluster by anchoring on a multivalent cation in a zeolite supercage studied by xenon adsorption. The Journal of Physical Chemistry, 1991, 95, 8546-8552.	2.9	28

#	Article	IF	CITATIONS
181	Mesoporous polymer–silica catalysts for selective hydroxylation of phenol. Green Chemistry, 2006, 8, 144.	9.0	28
182	Anatase TiO2 nanosheets with surface acid sites for Friedel–Crafts alkylation. Microporous and Mesoporous Materials, 2016, 222, 185-191.	4.4	28
183	Tomographic imaging of pore networks and connectivity of surfactant-directed mesoporous zeolites. Journal of Materials Chemistry A, 2017, 5, 11086-11093.	10.3	28
184	Catalytic Interplay of Ga, Pt, and Ce on the Alumina Surface Enabling High Activity, Selectivity, and Stability in Propane Dehydrogenation. ACS Catalysis, 2021, 11, 10767-10777.	11.2	28
185	CrAPO-5 catalysts having a hierarchical pore structure for the selective oxidation of tetralin to 1-tetralone. New Journal of Chemistry, 2010, 34, 2971.	2.8	26
186	Nanostructured MFI-type zeolites as catalysts in glycerol etherification with tert -butyl alcohol. Journal of Molecular Catalysis A, 2016, 422, 115-121.	4.8	26
187	Formation of small Pt-Ir bimetallic clusters in NaY zeolite probed with 129Xe NMR spectroscopy and ethane hydrogenolysis. Journal of Catalysis, 1992, 137, 357-367.	6.2	25
188	Acid catalytic function of mesopore walls generated by MFI zeolite desilication in comparison with external surfaces of MFI zeolite nanosheet. Applied Catalysis A: General, 2015, 492, 68-75.	4.3	25
189	Microporous 3D Graphene-like Zeolite-Templated Carbons for Preferential Adsorption of Ethane. ACS Applied Materials & Interfaces, 2020, 12, 28484-28495.	8.0	25
190	Study of hydrogen physisorption on nanoporous carbon materials of different origin. International Journal of Hydrogen Energy, 2011, 36, 7937-7943.	7.1	24
191	Synthesis of Silicate Zeolite Analogues Using Organic Sulfonium Compounds as Structureâ€Directing Agents. Angewandte Chemie - International Edition, 2015, 54, 12805-12808.	13.8	24
192	N-doped zeolite-templated carbon as a metal-free electrocatalyst for oxygen reduction. RSC Advances, 2016, 6, 43091-43097.	3.6	24
193	Nanocage-Confined Synthesis of Fluorescent Polycyclic Aromatic Hydrocarbons in Zeolite. Journal of the American Chemical Society, 2018, 140, 7101-7107.	13.7	24
194	Mesoporous molecular sieve with binary transition metal (Zr-Cr) oxide framework. Catalysis Today, 1997, 38, 221-226.	4.4	23
195	Large pore phenylene-bridged mesoporous organosilica with bicontinuous cubic Ia3Ì,,d (KIT-6) mesostructure. Journal of Materials Chemistry, 2010, 20, 8257.	6.7	23
196	Surfactant-directed mesoporous zeolites with enhanced catalytic activity in tetrahydropyranylation of alcohols: Effect of framework type and morphology. Applied Catalysis A: General, 2017, 537, 24-32.	4.3	23
197	Extremely high electrical conductance of microporous 3D graphene-like zeolite-templated carbon framework. Scientific Reports, 2017, 7, 11460.	3.3	23
198	Preparation of Iridium Clusters in Zeolite Y via Cation Exchange: EXAFS, Xenon Adsorption, and 129Xe NMR Studies. Journal of Catalysis, 1994, 149, 61-69.	6.2	22

#	Article	IF	CITATIONS
199	Bond density and physicochemical properties of a hydrogenated silicon nitride film. Journal of Physics and Chemistry of Solids, 1995, 56, 293-299.	4.0	22
200	An Analytical Approach to Determine the Pore Shape and Size of MCM-41 Materials from X-ray Diffraction Data. Journal of Physical Chemistry B, 2006, 110, 10630-10635.	2.6	22
201	High utilization of methanol in toluene methylation using MFI zeolite nanosponge catalyst. Catalysis Today, 2018, 303, 143-149.	4.4	22
202	Skeletal isomerization of n-butenes to isobutene over acid-treated natural clinoptilolite zeolites. Applied Catalysis A: General, 2000, 196, 135-142.	4.3	21
203	Annulation of Phenols: Catalytic Behavior of Conventional and 2 D Zeolites. ChemCatChem, 2014, 6, 1919-1927.	3.7	21
204	Synthesis of mesoporous carbons using silica templates impregnated with mineral acids. Microporous and Mesoporous Materials, 2015, 207, 156-162.	4.4	21
205	Cascade reaction engineering on zirconia-supported mesoporous MFI zeolites with tunable Lewis–BrÂ,nsted acid sites: a case of the one-pot conversion of furfural to γ-valerolactone. RSC Advances, 2020, 10, 35318-35328.	3.6	21
206	A Standâ€Alone Mesoporous Crystal Structure Model from in situ Xâ€ray Diffraction: Nitrogen Adsorption on 3 D Cagelike Mesoporous Silica SBAâ€16. Chemistry - A European Journal, 2012, 18, 10300-10311.	3.3	20
207	Dry-gel synthesis of mesoporous MFI zeolite nanosponges using a structure-directing surfactant. Microporous and Mesoporous Materials, 2017, 240, 123-129.	4.4	20
208	Mesocrystal engineering using non-bonded interaction to obtain optically transparent mesoporous silica films and plates with uniform orientation. Microporous and Mesoporous Materials, 1998, 21, 235-243.	4.4	19
209	Study of Argon Gas Adsorption in Ordered Mesoporous MFI Zeolite Framework. Journal of Physical Chemistry C, 2012, 116, 25300-25308.	3.1	19
210	Cu oxide deposited on shape-controlled ceria nanocrystals for CO oxidation: influence of interface-driven oxidation states on catalytic activity. Catalysis Science and Technology, 2021, 11, 6134-6142.	4.1	19
211	Exploring Mass Transfer in Mesoporous Zeolites by NMR Diffusometry. Materials, 2012, 5, 699-720.	2.9	18
212	Conversion of Kraft Lignin Over Hierarchical MFI Zeolite. Journal of Nanoscience and Nanotechnology, 2014, 14, 2414-2418.	0.9	18
213	Nonâ€Topotactic Transformation of Silicate Nanolayers into Mesostructured MFI Zeolite Frameworks During Crystallization. Angewandte Chemie - International Edition, 2017, 56, 5164-5169.	13.8	17
214	X-ray diffraction analysis of mesostructured materials by continuous density function technique. Studies in Surface Science and Catalysis, 2003, 146, 299-302.	1.5	16
215	Ultramicroporous Carbon Synthesis Using Lithium-Ion Effect in ZSM-5 Zeolite Template. Chemistry of Materials, 2018, 30, 6513-6520.	6.7	16
216	The facet effect of ceria nanoparticles on platinum dispersion and catalytic activity of methanol partial oxidation. Chemical Communications, 2021, 57, 7382-7385.	4.1	16

#	Article	IF	CITATIONS
217	Sodium-free synthesis of mesoporous zeolite to support Pt-Y alloy nanoparticles exhibiting high catalytic performance in propane dehydrogenation. Journal of Catalysis, 2021, 404, 760-770.	6.2	16
218	Chemisorption of H2 on supported Pt clusters probed by129Xe NMR. Catalysis Letters, 1993, 17, 273-283.	2.6	15
219	Anionic and Upper-Excited Fluorescence of C60Encapsulated in Y Zeolitic Nanocavity. Journal of Physical Chemistry B, 2001, 105, 4195-4199.	2.6	15
220	Anomalously High Lithium Storage in Three-Dimensional Graphene-like Ordered Microporous Carbon Electrodes. Journal of Physical Chemistry C, 2018, 122, 4955-4962.	3.1	15
221	Unraveling Direct Formation of Hierarchical Zeolite Beta by Dynamic Light Scattering, Small Angle X-ray Scattering, and Liquid and Solid-State NMR: Insights at the Supramolecular Level. Chemistry of Materials, 2018, 30, 2676-2686.	6.7	15
222	Doping effect of zeolite-templated carbon on electrical conductance and supercapacitance properties. Carbon, 2022, 193, 42-50.	10.3	15
223	A 129Xe NMR Spectroscopic Technique To Probe Exclusively the Internal Surface of Zeolite Crystallites by Coating of the External Surface. The Journal of Physical Chemistry, 1994, 98, 7101-7103.	2.9	14
224	Ru Clusters with Controlled Sizes in NaY Zeolite: Catalytic Activity for Ethane Hydrogenolysis and XANES. Journal of Catalysis, 1995, 153, 232-238.	6.2	14
225	Characterization of PtSn Nanoparticles in KL Zeolite and n-Hexane Aromatization Activity. Catalysis Letters, 2004, 97, 71-75.	2.6	14
226	A tricontinuous mesoporous system. Nature Chemistry, 2009, 1, 105-106.	13.6	14
227	Mesoporous EU-1 zeolite as a highly active catalyst for ethylbenzene hydroisomerization. Catalysis Science and Technology, 2016, 6, 2735-2741.	4.1	14
228	Highly monodisperse supported metal nanoparticles by basic ammonium functionalization of mesopore walls for industrially relevant catalysis. Chemical Communications, 2017, 53, 3810-3813.	4.1	14
229	Flame-made amorphous solid acids with tunable acidity for the aqueous conversion of glucose to levulinic acid. Green Chemistry, 2020, 22, 688-698.	9.0	14
230	Synthesis of zeolite-templated carbons using oxygen-containing organic solvents. Microporous and Mesoporous Materials, 2021, 318, 111038.	4.4	14
231	Hydrogen spillover in nonreducible oxides: Mechanism and catalytic utilization. Nano Research, 2022, 15, 10357-10365.	10.4	14
232	A study on the photophysical properties of anthracene in zeolite. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 80, 333-339.	3.9	13
233	Title is missing!. Angewandte Chemie, 2003, 115, 2232-2235.	2.0	13
234	Facile synthesis of mesoporous zeolite Y using seed gel and amphiphilic organosilane. Microporous and Mesoporous Materials, 2019, 288, 109579.	4.4	13

#	Article	IF	CITATIONS
235	129Xe Nuclear magnetic resonance study on a solid-state defect in HZSM-5 zeolite. Microporous Materials, 1995, 4, 59-64.	1.6	12
236	Highly dispersed Pt nanoclusters supported on zeolite-templated carbon for the oxygen reduction reaction. RSC Advances, 2020, 10, 32290-32295.	3.6	12
237	Atomic Scale Mechanisms Underlying Thermal Reshaping of Anisotropic Gold Nanocrystals Revealed by in Situ Electron Microscopy. Journal of Physical Chemistry C, 2020, 124, 12855-12863.	3.1	12
238	Synergy of Extraframework Al ³⁺ Cations and BrÃ,nsted Acid Sites on Hierarchical ZSM-5 Zeolites for Butanol-to-Olefin Conversion. Journal of Physical Chemistry C, 2021, 125, 11665-11676.	3.1	12
239	129Xe NMR to probe microscopic mixing state of composite catalysts. Catalysis Letters, 1990, 7, 417-422.	2.6	11
240	Xenon-129 NMR spectrum of xenon in the .alphacage of zeolite A during hydration and ion exchange. The Journal of Physical Chemistry, 1993, 97, 4124-4127.	2.9	11
241	A new synthesis procedure for titanium-containing zeolites under strong alkaline conditions and the catalytic activity for partial oxidation and photocatalytic decomposition. Catalysis Letters, 1996, 37, 217-221.	2.6	11
242	Microporous 3D Grapheneâ€Like Carbon as lodine Host for Zincâ€Based Battery–Supercapacitor Hybrid Energy Storage with Ultrahigh Energy and Power Densities. Advanced Energy and Sustainability Research, 2021, 2, 2100076.	5.8	11
243	EXAFS and Catalytic Activity of AgPt Bimetallic Cluster Supported on NaY Zeolite. Japanese Journal of Applied Physics, 1993, 32, 475.	1.5	10
244	Clustering of Platinum Atoms in Zeolite EMT Supercage: Comprehensive Physicochemical Characterization. Studies in Surface Science and Catalysis, 1994, 84, 765-772.	1.5	10
245	The reduction of dissolved oxygen by hydrazine over platinum catalyst supported on disordered mesoporous materials. Korean Journal of Chemical Engineering, 1998, 15, 611-614.	2.7	10
246	Title is missing!. Adsorption, 1999, 5, 313-317.	3.0	10
247	Optimization of silica/surfactant ratio in MCM-41 synthesis. Studies in Surface Science and Catalysis, 2005, 156, 55-62.	1.5	10
248	The dynamics of Br(2Pj) formation in the photodissociation of vinyl and perfluorovinyl bromides. Journal of Chemical Physics, 2005, 122, 034308.	3.0	10
249	Soft-to-hard consecutive templating one-pot route from metal nitrate/phenol resin/surfactant to mesoporous metal oxides with enhanced thermal stability. Microporous and Mesoporous Materials, 2020, 293, 109767.	4.4	10
250	Critical ion concentrations for clusters in sodium sulfonated polystyrene lonomers. Polymer Engineering and Science, 1991, 31, 873-878.	3.1	9
251	Application of129Xe NMR spectroscopy and EXAFS to probe the formation of a bimetallic cluster in zeolite Y. Applied Magnetic Resonance, 1995, 8, 475-488.	1.2	9
252	Catalytic Conversion of Waste Particle Board to Bio-Oil Using Nanoporous Catalyst. Journal of Nanoscience and Nanotechnology, 2012, 12, 5367-5372.	0.9	9

#	Article	IF	CITATIONS
253	Coâ€development of Crystalline and Mesoscopic Order in Mesostructured Zeolite Nanosheets. Angewandte Chemie, 2015, 127, 941-945.	2.0	9
254	Mesoporous titania with anatase framework synthesized using polyphenolic structure-directing agent: Synthesis domain and catalytic metal loading. Microporous and Mesoporous Materials, 2015, 212, 117-124.	4.4	9
255	Impact of pore topology and crystal thickness of nanosponge zeolites on the hydroconversion of ethylbenzene. Catalysis Science and Technology, 2016, 6, 2653-2662.	4.1	9
256	Nanosponge TSâ€1: A Fully Crystalline Hierarchical Epoxidation Catalyst. Advanced Materials Interfaces, 2021, 8, 2001288.	3.7	9
257	XANES and EXAFS study of a platinum phthalocyanine. Journal of the Chemical Society Chemical Communications, 1994, , 785.	2.0	8
258	Regeneration of mesoporous inorganic materials using ordered mesoporous carbon as the template. Studies in Surface Science and Catalysis, 2003, 146, 53-56.	1.5	8
259	Mesopore expansion of surfactant-directed nanomorphic zeolites with trimethylbenzene. Microporous and Mesoporous Materials, 2014, 194, 83-89.	4.4	8
260	Mesopore-selective incorporation of strong BrÃ,nsted acid catalytic sites via aluminium grafting on hierarchically porous siliceous MFI zeolite. Microporous and Mesoporous Materials, 2020, 305, 110353.	4.4	8
261	Influence of hierarchical ZSM-5 catalysts with various acidity on the dehydration of glycerol to acrolein. Magnetic Resonance Letters, 2021, 1, 71-80.	1.3	7
262	Enhanced catalytic activity of phosphorus-modified SSZ-13 zeolite in the ethylene-to-propylene reaction by controlling acidity and intracrystalline diffusivity. Chemical Engineering Journal, 2022, 446, 137169.	12.7	7
263	Preparation, characterization and catalytic activity of heteropolyacids supported on mesoporous silica and carbon. Studies in Surface Science and Catalysis, 2003, 146, 657-660.	1.5	6
264	Nanoporous 3D Graphene-like Zeolite-Templated Carbon for High-Affinity Separation of Xenon from Krypton. ACS Applied Nano Materials, 0, , .	5.0	6
265	Molecular motions of tactic poly(2-hydroxyethyl methacrylate) in solutions studied by 13C-NMR relaxation measurement. Journal of Polymer Science Part A, 1989, 27, 1383-1399.	2.3	5
266	Structures of silica-mesoporous crystals and novel mesoporous carbon-networks synthesized within the pores. Studies in Surface Science and Catalysis, 2003, 146, 275-280.	1.5	5
267	Sulfonium-based organic structure-directing agents for microporous aluminophosphate synthesis. Microporous and Mesoporous Materials, 2019, 280, 75-81.	4.4	5
268	Tailoring Multiple Porosities of Hierarchical ZSMâ€5 Zeolites by Carbon Dots for Highâ€Performance Catalytic Transformation. Advanced Materials Interfaces, 2021, 8, 2001846.	3.7	5
269	Engineering Active Sites in Threeâ€Dimensional Hierarchically Porous Grapheneâ€Like Carbon with Co and Nâ€Doped Carbon for Highâ€Performance Zincâ€Air Battery. ChemElectroChem, 2021, 8, 4038-4046.	3.4	5
270	Base-type nitrogen doping in zeolite-templated carbon for enhancement of carbon dioxide sorption. Journal of CO2 Utilization, 2022, 62, 102084.	6.8	5

#	Article	IF	CITATIONS
271	Formation and Growth of a Nanosized Rulr Bimetallic Cluster Supported on NaY Zeolite. Journal of Physical Chemistry B, 2001, 105, 1293-1298.	2.6	4
272	Synthesis of mesoporous carbons with various pore diameters via control of pore wall thickness of mesoporous silicas. Studies in Surface Science and Catalysis, 2003, , 33-36.	1.5	4
273	Design of bimetallic nanoparticles. International Journal of Nanotechnology, 2006, 3, 194.	0.2	4
274	Catalytic Pyrolysis of Oil Fractions Separated from Food Waste Leachate Over Nanoporous Acid Catalysts. Journal of Nanoscience and Nanotechnology, 2011, 11, 6167-6171.	0.9	4
275	Mesostructured Zeolites. Green Chemistry and Sustainable Technology, 2016, , 101-148.	0.7	4
276	Self-organization of silicates on different length scales exemplified by amorphous mesoporous silica and mesoporous zeolite beta using multiammonium surfactants. RSC Advances, 2020, 10, 20928-20938.	3.6	4
277	Annealing Effects in Hydrogenated Silicon Nitride Films during High Energy Ion Beam Irradiation. Journal of the Electrochemical Society, 1995, 142, 3210-3214.	2.9	3
278	Thermally induced structural changes in SBA-15 and MSU-H silicas and their implications for synthesis of ordered mesoporous carbons. Studies in Surface Science and Catalysis, 2003, , 49-52.	1.5	3
279	Nonâ€Topotactic Transformation of Silicate Nanolayers into Mesostructured MFI Zeolite Frameworks During Crystallization. Angewandte Chemie, 2017, 129, 5246-5251.	2.0	3
280	White fluorescence of polyaromatics derived from methanol conversion in Ca ²⁺ -exchanged small-pore zeolites. Materials Chemistry Frontiers, 2021, 5, 4634-4644.	5.9	3
281	Synergistic interactions between water and the metal/oxide interface in CO oxidation on Pt/CeO2 model catalysts. Catalysis Today, 2022, , .	4.4	3
282	Thermodynamic properties of liquid carbon. Carbon, 1985, 23, 481-485.	10.3	2
283	Effect of multivalent cations on agglomeration of Ru clusters supported on Y zeolite. Catalysis Letters, 2001, 71, 163-167.	2.6	2
284	Fine Structures of Zeolites and Mesoporous Materials. Microscopy and Microanalysis, 2000, 6, 8-9.	0.4	1
285	Friedel-crafts alkylation over Al-incorporated mesoporous honeycomb. Studies in Surface Science and Catalysis, 2003, 146, 669-672.	1.5	1
286	Microporous 3D Grapheneâ€Like Carbon as lodine Host for Zincâ€Based Battery–Supercapacitor Hybrid Energy Storage with Ultrahigh Energy and Power Densities. Advanced Energy and Sustainability Research, 2021, 2, 2170023.	5.8	1
287	PdPt bimetallic cluster supported on kl zeolite probed with xenon adsorption measurement, EXAFS/XANES and n-Butane hydrogenolysis. Studies in Surface Science and Catalysis, 1999, 121, 295-300.	1.5	0
288	Synthesis of ordered nanoporous carbons using mesoporous template and their perspectives. , 0, , .		0

17

#	Article	IF	CITATIONS
289	Surface and pore structures of CMK-5 ordered mesoporous carbons studied by nitrogen adsorption and surface spectroscopic methods. Studies in Surface Science and Catalysis, 2003, 146, 335-338.	1.5	0
290	Adsorption on Ordered Porous Carbons. , 2008, , 455-477.		0
291	Structural Characterization of Nanosheet-type MFI Zeolite. Nihon Kessho Gakkaishi, 2011, 53, 135-140.	0.0	Ο
292	Innenrücktitelbild: Synthesis of Silicate Zeolite Analogues Using Organic Sulfonium Compounds as Structure-Directing Agents (Angew. Chem. 43/2015). Angewandte Chemie, 2015, 127, 13015-13015.	2.0	0
293	Corrigendum to "Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences―[J. Catal. 288 (2012) 115–123]. Journal of Catalysis, 2015, 327, 96.	6.2	Ο
294	Mesoporous In-Sn binary oxides of crystalline framework with extended compositional variation. Microporous and Mesoporous Materials, 2016, 228, 14-21.	4.4	0