Minah Lee

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7203563/minah-lee-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

42 4,032 29 49 g-index

49 4,927 17.1 5.59 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
42	Weakly Solvating Solution Enables Chemical Prelithiation of Graphite-SiO Anodes for High-Energy Li-Ion Batteries. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9169-9176	16.4	24
41	Solution Processing of Lithium-Rich Amorphous Li-La-Zr-O Ion Conductor and Its Application for Cycling Durability Improvement of LiCoO2 Cathode as Coating Layer. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001767	4.6	1
40	Molecularly Tailored Lithium-Arene Complex Enables Chemical Prelithiation of High-Capacity Lithium-Ion Battery Anodes. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14473-14480	16.4	40
39	Innentitelbild: Molecularly Tailored Lithium Arene Complex Enables Chemical Prelithiation of High-Capacity Lithium-Ion Battery Anodes (Angew. Chem. 34/2020). <i>Angewandte Chemie</i> , 2020 , 132, 14270-14270	3.6	
38	Molecularly Tailored Lithium Arene Complex Enables Chemical Prelithiation of High-Capacity Lithium-Ion Battery Anodes. <i>Angewandte Chemie</i> , 2020 , 132, 14581-14588	3.6	9
37	A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes. <i>Joule</i> , 2019 , 3, 2761-2776	27.8	103
36	Designing a Quinone-Based Redox Mediator to Facilitate Li2S Oxidation in Li-S Batteries. <i>Joule</i> , 2019 , 3, 872-884	27.8	114
35	An Electrochemical Gelation Method for Patterning Conductive PEDOT:PSS Hydrogels. <i>Advanced Materials</i> , 2019 , 31, e1902869	24	81
34	Robust and conductive two-dimensional metalorganic frameworks with exceptionally high volumetric and areal capacitance. <i>Nature Energy</i> , 2018 , 3, 30-36	62.3	528
33	Stabilization of Hexaaminobenzene in a 2D Conductive Metal-Organic Framework for High Power Sodium Storage. <i>Journal of the American Chemical Society</i> , 2018 , 140, 10315-10323	16.4	234
32	Crosslinked Poly(tetrahydrofuran) as a Loosely Coordinating Polymer Electrolyte. <i>Advanced Energy Materials</i> , 2018 , 8, 1800703	21.8	95
31	Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. <i>Nature Communications</i> , 2018 , 9, 2740	17.4	194
30	A Dual-Crosslinking Design for Resilient Lithium-Ion Conductors. <i>Advanced Materials</i> , 2018 , 30, e18041	42 4	80
29	Synthetic Routes for a 2D Semiconductive Copper Hexahydroxybenzene Metal-Organic Framework. Journal of the American Chemical Society, 2018 , 140, 14533-14537	16.4	121
28	Photoelectroenzymatic Oxyfunctionalization on Flavin-Hybridized Carbon Nanotube Electrode Platform. <i>ACS Catalysis</i> , 2017 , 7, 1563-1567	13.1	44
27	Multi-electron redox phenazine for ready-to-charge organic batteries. <i>Green Chemistry</i> , 2017 , 19, 2980-	-2 9 85	84
26	High-performance sodium B rganic battery by realizing four-sodium storage in disodium rhodizonate. <i>Nature Energy</i> , 2017 , 2, 861-868	62.3	272

25	Rational design of redox mediators for advanced LiD2 batteries. <i>Nature Energy</i> , 2016 , 1,	62.3	263
24	Self-adhesive graphene oxide-wrapped TiO2 nanoparticles for UV-activated colorimetric oxygen detection. <i>Sensors and Actuators B: Chemical</i> , 2015 , 213, 322-328	8.5	15
23	High Energy Organic Cathode for Sodium Rechargeable Batteries. <i>Chemistry of Materials</i> , 2015 , 27, 725	58 <i>9</i> 7@64	122
22	A hematite-based photoelectrochemical platform for visible light-induced biosensing. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 4483-4486	7.3	21
21	Aluminum Nanoarrays for Plasmon-Enhanced Light Harvesting. ACS Nano, 2015, 9, 6206-13	16.7	70
20	Mussel-inspired plasmonic nanohybrids for light harvesting. Advanced Materials, 2014 , 26, 4463-8	24	60
19	Polydopamine as a Biomimetic Electron Gate for Artificial Photosynthesis. <i>Angewandte Chemie</i> , 2014 , 126, 6482-6486	3.6	11
18	Polydopamine as a biomimetic electron gate for artificial photosynthesis. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 6364-8	16.4	94
17	Biologically inspired pteridine redox centres for rechargeable batteries. <i>Nature Communications</i> , 2014 , 5, 5335	17.4	188
16	Nanostructures: Mussel-Inspired Plasmonic Nanohybrids for Light Harvesting (Adv. Mater. 26/2014). <i>Advanced Materials</i> , 2014 , 26, 4596-4596	24	
15	Lithium-Ion Batteries: Organic Nanohybrids for Fast and Sustainable Energy Storage (Adv. Mater. 16/2014). <i>Advanced Materials</i> , 2014 , 26, 2608-2608	24	
14	Organic nanohybrids for fast and sustainable energy storage. <i>Advanced Materials</i> , 2014 , 26, 2558-65	24	174
13	Innentitelbild: Polydopamine as a Biomimetic Electron Gate for Artificial Photosynthesis (Angew. Chem. 25/2014). <i>Angewandte Chemie</i> , 2014 , 126, 6396-6396	3.6	
12	Carbon-based nanomaterials for tissue engineering. Advanced Healthcare Materials, 2013 , 2, 244-60	10.1	160
11	Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8322-8	16.4	113
10	Titelbild: Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energy-Storage Compound (Angew. Chem. 32/2013). <i>Angewandte Chemie</i> , 2013 , 125, 8329-8329	3.6	1
9	Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energy-Storage Compound. <i>Angewandte Chemie</i> , 2013 , 125, 8480-8486	3.6	22
8	Self-Assembled Light-Harvesting Peptide Nanotubes for Mimicking Natural Photosynthesis. <i>Angewandte Chemie</i> , 2012 , 124, 532-535	3.6	51

7	Titelbild: Self-Assembled Light-Harvesting Peptide Nanotubes for Mimicking Natural Photosynthesis (Angew. Chem. 2/2012). <i>Angewandte Chemie</i> , 2012 , 124, 285-285	3.6	
6	Self-assembled light-harvesting peptide nanotubes for mimicking natural photosynthesis. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 517-20	16.4	189
5	Critical Role of Oxygen Evolved from Layered Li E xcess Metal Oxides in Lithium Rechargeable Batteries. <i>Chemistry of Materials</i> , 2012 , 24, 2692-2697	9.6	213
4	Zn-containing porphyrin as a biomimetic light-harvesting molecule for biocatalyzed artificial photosynthesis. <i>Chemical Communications</i> , 2011 , 47, 10227-9	5.8	51
3	Biomimetic artificial photosynthesis by light-harvesting synthetic wood. <i>ChemSusChem</i> , 2011 , 4, 581-6	8.3	38
2	Bone-like peptide/hydroxyapatite nanocomposites assembled with multi-level hierarchical structures. <i>Soft Matter</i> , 2011 , 7, 7201	3.6	57
1	Mussel-inspired functionalization of carbon nanotubes for hydroxyapatite mineralization. <i>Journal of Materials Chemistry</i> , 2010 , 20, 8848		80