Raquel Conde-Ãlvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7203193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brucellosis in Sub-Saharan Africa: Current challenges for management, diagnosis and control. Acta Tropica, 2017, 165, 179-193.	2.0	171
2	Brucellosis Vaccines: Assessment of Brucella melitensis Lipopolysaccharide Rough Mutants Defective in Core and O-Polysaccharide Synthesis and Export. PLoS ONE, 2008, 3, e2760.	2.5	159
3	The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition. PLoS Pathogens, 2012, 8, e1002675.	4.7	140
4	Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cellular Microbiology, 2006, 8, 1322-1335.	2.1	108
5	Microarray Analysis Reveals Characteristic Changes of Host Cell Gene Expression in Response to Attenuated Modified Vaccinia Virus Ankara Infection of Human HeLa Cells. Journal of Virology, 2004, 78, 5820-5834.	3.4	77
6	Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence. Journal of Biological Chemistry, 2016, 291, 7727-7741.	3.4	76
7	A review of the basis of the immunological diagnosis of ruminant brucellosis. Veterinary Immunology and Immunopathology, 2016, 171, 81-102.	1.2	75
8	A systematic review of current immunological tests for the diagnosis of cattle brucellosis. Preventive Veterinary Medicine, 2018, 151, 57-72.	1.9	75
9	The Differential Interaction of Brucella and Ochrobactrum with Innate Immunity Reveals Traits Related to the Evolution of Stealthy Pathogens. PLoS ONE, 2009, 4, e5893.	2.5	60
10	Specific inhibition of diverse pathogens in human cells by synthetic microRNA-like oligonucleotides inferred from RNAi screens. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4548-4553.	7.1	60
11	Thermodynamic Analysis of the Lipopolysaccharide-Dependent Resistance of Gram-Negative Bacteria against Polymyxin B. Biophysical Journal, 2007, 92, 2796-2805.	0.5	54
12	Poor performance of the rapid test for human brucellosis in health facilities in Kenya. PLoS Neglected Tropical Diseases, 2017, 11, e0005508.	3.0	52
13	Brucella abortus Depends on Pyruvate Phosphate Dikinase and Malic Enzyme but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases for Full Virulence in Laboratory Models. Journal of Bacteriology, 2014, 196, 3045-3057.	2.2	43
14	Lipopolysaccharide as a target for brucellosis vaccine design. Microbial Pathogenesis, 2013, 58, 29-34.	2.9	38
15	Simultaneous analysis of large-scale RNAi screens for pathogen entry. BMC Genomics, 2014, 15, 1162.	2.8	38
16	2-Hydroxylation of <i>Acinetobacter baumannii</i> Lipid A Contributes to Virulence. Infection and Immunity, 2019, 87, .	2.2	37
17	<i>Brucella</i> , nitrogen and virulence. Critical Reviews in Microbiology, 2016, 42, 507-525.	6.1	36
18	Brucella abortus Ornithine Lipids Are Dispensable Outer Membrane Components Devoid of a Marked Pathogen-Associated Molecular Pattern. PLoS ONE, 2011, 6, e16030.	2.5	36

#	Article	IF	CITATIONS
19	gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens. Genome Biology, 2015, 16, 220.	8.8	35
20	Mutants in the lipopolysaccharide of Brucella ovis are attenuated and protect against B. ovis infection in mice. Veterinary Research, 2014, 45, 72.	3.0	34
21	The identification of wadB, a new glycosyltransferase gene, confirms the branched structure and the role in virulence of the lipopolysaccharide core of Brucella abortus. Microbial Pathogenesis, 2014, 73, 53-59.	2.9	32
22	Immunomodulatory properties of <i>Brucella melitensis</i> lipopolysaccharide determinants on mouse dendritic cells <i>in vitro</i> and <i>in vivo</i> . Virulence, 2018, 9, 465-479.	4.4	24
23	Prevalence and risk factors of brucellosis among febrile patients attending a community hospital in south western Uganda. Scientific Reports, 2018, 8, 15465.	3.3	22
24	Modulation of Haemophilus influenzae interaction with hydrophobic molecules by the VacJ/MlaA lipoprotein impacts strongly on its interplay with the airways. Scientific Reports, 2018, 8, 6872.	3.3	19
25	Genetic and Phenotypic Characterization of the Etiological Agent of Canine Orchiepididymitis Smooth Brucella sp. BCCN84.3. Frontiers in Veterinary Science, 2019, 6, 175.	2.2	18
26	Identification and functional analysis of the cyclopropane fatty acid synthase of Brucella abortus. Microbiology (United Kingdom), 2012, 158, 1037-1044.	1.8	17
27	The CO2-dependence of Brucella ovis and Brucella abortus biovars is caused by defective carbonic anhydrases. Veterinary Research, 2018, 49, 85.	3.0	16
28	Genomic Insertion of a Heterologous Acetyltransferase Generates a New Lipopolysaccharide Antigenic Structure in Brucella abortus and Brucella melitensis. Frontiers in Microbiology, 2018, 9, 1092.	3.5	16
29	Wiskott-Aldrich Syndrome Protein Is Needed for Vaccinia Virus Pathogenesis. Journal of Virology, 2005, 79, 2133-2140.	3.4	15
30	Performance of skin tests with allergens from B. melitensis B115 and rough B. abortus mutants for diagnosing swine brucellosis. Veterinary Microbiology, 2014, 168, 161-168.	1.9	14
31	Molecular recognition of lipopolysaccharide by the lantibiotic nisin. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 83-92.	2.6	13
32	WadD, a New Brucella Lipopolysaccharide Core Glycosyltransferase Identified by Genomic Search and Phenotypic Characterization. Frontiers in Microbiology, 2018, 9, 2293.	3.5	12
33	The prevalence of brucellosis and bovine tuberculosis in ruminants in Sidi Kacem Province, Morocco. PLoS ONE, 2018, 13, e0203360.	2.5	10
34	The Fast-Growing Brucella suis Biovar 5 Depends on Phosphoenolpyruvate Carboxykinase and Pyruvate Phosphate Dikinase but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases or Isocitrate Lyase for Full Virulence in Laboratory Models. Frontiers in Microbiology, 2018, 9, 641.	3.5	10
35	Vaccine development targeting lipopolysaccharide structure modification. Microbes and Infection, 2018, 20, 455-460.	1.9	9
36	Mutants in the lipopolysaccharide of. Veterinary Research, 2014, 45, 72.	3.0	9

#	Article	IF	CITATIONS
37	The characterization of Brucella strains isolated from cattle in Algeria reveals the existence of a B. abortus lineage distinct from European and Sub-Saharan Africa strains. Veterinary Microbiology, 2017, 211, 124-128.	1.9	8
38	Rev1 wbdR tagged vaccines against Brucella ovis. Veterinary Research, 2019, 50, 95.	3.0	8
39	Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells. Journal of Visualized Experiments, 2016, , .	0.3	6
40	Development of attenuated live vaccine candidates against swine brucellosis in a non-zoonotic B. suis biovar 2 background. Veterinary Research, 2020, 51, 92.	3.0	6
41	The Phospholipid N-Methyltransferase and Phosphatidylcholine Synthase Pathways and the ChoXWV Choline Uptake System Involved in Phosphatidylcholine Synthesis Are Widely Conserved in Most, but Not All Brucella Species. Frontiers in Microbiology, 2021, 12, 614243.	3.5	6
42	Pseudochrobactrum algeriensis sp. nov., isolated from lymph nodes of Algerian cattle. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	6
43	Identification of lptA, lpxE, and lpxO, Three Genes Involved in the Remodeling of Brucella Cell Envelope. Frontiers in Microbiology, 2017, 8, 2657.	3.5	5
44	Disruption of pyruvate phosphate dikinase in Brucella ovis PA CO2-dependent and independent strains generates attenuation in the mouse model. Veterinary Research, 2020, 51, 101.	3.0	3
45	A Brucella melitensis H38ΔwbkF rough mutant protects against Brucella ovis in rams. Veterinary Research, 2022, 53, 16.	3.0	3
46	Glucose Oxidation to Pyruvate Is Not Essential for Brucella suis Biovar 5 Virulence in the Mouse Model. Frontiers in Microbiology, 2020, 11, 620049.	3.5	2