Javier Alonso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7202792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tunable High Aspect Ratio Iron Oxide Nanorods for Enhanced Hyperthermia. Journal of Physical Chemistry C, 2016, 120, 10086-10093.	1.5	209
2	Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size. Journal of Physical Chemistry C, 2018, 122, 2367-2381.	1.5	178
3	Enhanced Magnetic Hyperthermia in Iron Oxide Nano-Octopods: Size and Anisotropy Effects. Journal of Physical Chemistry C, 2016, 120, 8370-8379.	1.5	153
4	Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems. Nanomaterials, 2016, 6, 221.	1.9	124
5	Structure and Magnetic Properties of Thin Permalloy Films Near the "Transcritical―State. IEEE Transactions on Magnetics, 2010, 46, 333-336.	1.2	114
6	Electrochemical Na Extraction/Insertion of Na ₃ V ₂ O _{2<i>x</i>} (PO ₄) ₂ F _{3–2<i>x</i> Chemistry of Materials, 2013, 25, 4917-4925.}	<b sub>.	112
7	Sodium Distribution and Reaction Mechanisms of a Na ₃ V ₂ O ₂ (PO ₄) ₂ F Electrode during Use in a Sodium-Ion Battery. Chemistry of Materials, 2014, 26, 3391-3402.	3.2	112
8	Magnetite Biomineralization inMagnetospirillum gryphiswaldense: Time-Resolved Magnetic and Structural Studies. ACS Nano, 2013, 7, 3297-3305.	7.3	107
9	Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe ₃ O ₄ Nanoflowers. ACS Applied Materials & Interfaces, 2016, 8, 25162-25169.	4.0	107
10	Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles. Journal of Applied Physics, 2015, 117, .	1.1	103
11	Optimal Parameters for Hyperthermia Treatment Using Biomineralized Magnetite Nanoparticles: Theoretical and Experimental Approach. Journal of Physical Chemistry C, 2016, 120, 24437-24448.	1.5	94
12	Interplay between microstructure and magnetism in NiO nanoparticles: breakdown of the antiferromagnetic order. Nanoscale, 2014, 6, 457-465.	2.8	90
13	Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles. Scientific Reports, 2015, 5, 15054.	1.6	89
14	FeCo nanowires with enhanced heating powers and controllable dimensions for magnetic hyperthermia. Journal of Applied Physics, 2015, 117, .	1.1	83
15	Iron oxide nanoparticles fabricated by electric explosion of wire: focus on magnetic nanofluids. AIP Advances, 2012, 2, .	0.6	82
16	Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents. Small, 2019, 15, e1902626.	5.2	79
17	Crossover from superspin glass to superferromagnet inFexAg100â^'xnanostructured thin films(20â‰ඤෲීරාණ). Physical Review B, 2010, 82,	1.1	68
18	Ni Doped Fe ₃ O ₄ Magnetic Nanoparticles. Journal of Nanoscience and Nanotechnology, 2012, 12, 2652-2660.	0.9	55

#	Article	IF	CITATIONS
19	Core/shell iron/iron oxide nanoparticles: are they promising for magnetic hyperthermia?. RSC Advances, 2016, 6, 38697-38702.	1.7	53
20	Superparamagnetic iron oxide nanodiscs for hyperthermia therapy: Does size matter?. Journal of Alloys and Compounds, 2017, 714, 709-714.	2.8	53
21	Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia. Scientific Reports, 2016, 6, 39300.	1.6	50
22	Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications. Nanoscale Advances, 2021, 3, 867-888.	2.2	48
23	FeNi-based magnetoimpedance multilayers: Tailoring of the softness by magnetic spacers. Applied Physics Letters, 2012, 100, .	1.5	47
24	Heteronuclear, mixed-metal Ag(<scp>i</scp>)–Mn(<scp>ii</scp>) coordination polymers with bridging N-pyridinylisonicotinohydrazide ligands: synthesis, crystal structures, magnetic and photoluminescence properties. Dalton Transactions, 2014, 43, 11925.	1.6	42
25	Magnetic iron oxide-carbon nanocomposites: Impacts of carbon coating on the As(V) adsorption and inductive heating responses. Journal of Alloys and Compounds, 2018, 739, 139-148.	2.8	37
26	Magnetotactic bacteria for cancer therapy. Journal of Applied Physics, 2020, 128, .	1.1	37
27	From core/shell to hollow Fe/ <i>γ</i> -Fe ₂ O ₃ nanoparticles: evolution of the magnetic behavior. Nanotechnology, 2015, 26, 405705.	1.3	33
28	Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures. Nanotechnology, 2016, 27, 155707.	1.3	30
29	Iron Oxide Nanospheres and Nanocubes for Magnetic Hyperthermia Therapy: A Comparative Study. Journal of Electronic Materials, 2017, 46, 3764-3769.	1.0	29
30	Isolation of Cancer-Derived Exosomes Using a Variety of Magnetic Nanostructures: From Fe3O4 Nanoparticles to Ni Nanowires. Nanomaterials, 2020, 10, 1662.	1.9	29
31	Superparamagnetic nanoparticles encapsulated in lipid vesicles for advanced magnetic hyperthermia and biodetection. Journal of Applied Physics, 2016, 119, .	1.1	28
32	Polyacrylamide Ferrogels with Ni Nanowires. Materials, 2019, 12, 2582.	1.3	28
33	Valence and Core Electron Spectra of Mg in MgO in Evoporated Thin Films. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 1975, 30, 1485-1490.	0.7	27
34	Syntheses, crystal structures and magnetic studies of new manganese(II) coordination polymers with ditopic N-pyridinylisonicotinohydrazide ligand and dicyanamide. Inorganic Chemistry Communication, 2016, 67, 85-89.	1.8	26
35	Magnetic Isolation of Cancer-Derived Exosomes Using Fe/Au Magnetic Nanowires. ACS Applied Nano Materials, 2020, 3, 2058-2069.	2.4	26
36	On the mineral core of ferritin-like proteins: structural and magnetic characterization. Nanoscale, 2016. 8. 1088-1099.	2.8	25

#	Article	IF	CITATIONS
37	Interfacial magnetic coupling between Fe nanoparticles in Fe–Ag granular alloys. Nanotechnology, 2012, 23, 025705.	1.3	24
38	Magnetic Study of Co-Doped Magnetosome Chains. Journal of Physical Chemistry C, 2018, 122, 7541-7550.	1.5	24
39	LiFePO4 thin films grown by pulsed laser deposition: Effect of the substrate on the film structure and morphology. Applied Surface Science, 2010, 256, 2563-2568.	3.1	23
40	Superparamagnetic properties of carbon nanotubes filled with NiFe2O4 nanoparticles. Journal of Applied Physics, 2015, 117, .	1.1	23
41	Influence of the bacterial growth phase on the magnetic properties of magnetosomes synthesized by Magnetospirillum gryphiswaldense. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1507-1514.	1.1	23
42	Magnetic Nanoparticles, Synthesis, Properties, and Applications. , 2018, , 1-40.		23
43	Magnetic Vortex and Hyperthermia Suppression in Multigrain Iron Oxide Nanorings. Applied Sciences (Switzerland), 2020, 10, 787.	1.3	17
44	Elucidating the role of shape anisotropy in faceted magnetic nanoparticles using biogenic magnetosomes as a model. Nanoscale, 2020, 12, 16081-16090.	2.8	15
45	Remote triggering of thermoresponsive PNIPAM by iron oxide nanoparticles. RSC Advances, 2016, 6, 5641-5652.	1.7	14
46	Magnetic disorder in diluted Fe _{<i>x</i>} M _{100â^'<i>x</i>} granular thin films (M=Au, Ag, Cu; <i>x</i> < 10 at.%). Journal of Physics Condensed Matter, 2013, 25, 276001.	0.7	13
47	Iron Oxide Nanorings and Nanotubes for Magnetic Hyperthermia: The Problem of Intraparticle Interactions. Nanomaterials, 2021, 11, 1380.	1.9	12
48	Microstructure and magnetic properties of colloidal cobalt nano-clusters. Journal of Magnetism and Magnetic Materials, 2010, 322, 3565-3571.	1.0	11
49	Breakdown of magnetism in sub-nanometric Ni clusters embedded in Ag. Nanotechnology, 2015, 26, 455703.	1.3	11
50	Magnetic nanoscopic correlations in the crossover between a superspin glass and a superferromagnet. Journal of Applied Physics, 2016, 119, .	1.1	10
51	Investigating the Size and Microstrain Influence in the Magnetic Order/Disorder State of GdCu2 Nanoparticles. Nanomaterials, 2020, 10, 1117.	1.9	10
52	Controlled Magnetic Anisotropy in Single Domain Mn-doped Biosynthesized Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 22827-22838.	1.5	9
53	Nanoflowers Versus Magnetosomes: Comparison Between Two Promising Candidates for Magnetic Hyperthermia Therapy. IEEE Access, 2021, 9, 99552-99561.	2.6	9
54	Monte Carlo simulations of magnetic order in Fe-doped manganites. Physica B: Condensed Matter, 2008, 403, 394-397.	1.3	7

#	Article	IF	CITATIONS
55	Exploring the Different Degrees of Magnetic Disorder in TbxR1â^xCu2 Nanoparticle Alloys. Nanomaterials, 2020, 10, 2148.	1.9	7
56	Entangled core/shell magnetic structure driven by surface magnetic symmetry-breaking in Cr ₂ O ₃ nanoparticles. Journal of Materials Chemistry C, 2022, 10, 1798-1807.	2.7	5
57	Disclosure of Double Exchange Bias Effect in Chromium (III) Oxide Nanoparticles. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	4
58	Influence of the Si Substrate on the Transport and Magnetotransport Properties of Nanostructured Fe-Ag Thin Films. IEEE Transactions on Magnetics, 2008, 44, 2784-2787.	1.2	3
59	Influence of the interface on the electronic channel switching of a Fe–Ag thin film on a Si substrate. Applied Physics Letters, 2009, 95, .	1.5	3
60	Collective magnetic behaviors of Fe–Ag nanostructured thin films above the percolation limit. Journal of Applied Physics, 2009, 105, 07B513.	1.1	3
61	Effects of thermal annealing on the magnetic interactions in nanogranular Fe–Ag thin films. Journal of Alloys and Compounds, 2012, 536, S271-S276.	2.8	3
62	Magnetic Properties and Magnetic Entropy Change in Gd/Ti Multilayers. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	3
63	On the exchange bias effect in NiO nanoparticles with a core(antiferromagnetic)/shell (spin glass) morphology. Journal of Physics: Conference Series, 2015, 663, 012001.	0.3	3
64	Remotely Controlled Micromanipulation by Buckling Instabilities in Fe ₃ O ₄ Nanoparticle Embedded Poly(<i>N</i> -isopropylacrylamide) Surface Arrays. ACS Applied Materials & Interfaces, 2016, 8, 28012-28018.	4.0	3
65	Nature Driven Magnetic Nanoarchitectures. Springer Series in Materials Science, 2021, , 159-179.	0.4	3
66	Hollow Magnetic Nanoparticles. Springer Series in Materials Science, 2021, , 137-158.	0.4	3
67	Modifying the magnetic response of magnetotactic bacteria: incorporation of Gd and Tb ions into the magnetosome structure. Nanoscale Advances, 2022, 4, 2649-2659.	2.2	3
68	Fabrication of Patterned Ferromagnetic Shape Memory Thin Films. Key Engineering Materials, 0, 644, 219-222.	0.4	2
69	Magnetic Hyperthermia: Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents (Small 41/2019). Small, 2019, 15, 1970222.	5.2	2
70	Influence of the Interactions on the Magnetotransport Properties of Fe–Ag Granular Thin Films. Journal of Nanoscience and Nanotechnology, 2012, 12, 7473-7476.	0.9	1
71	Suppression of ferromagnetic order in CuO/Cu2O nanocomposites. Materials Today Communications, 2022, 32, 104038.	0.9	1
72	Correction to "Influence of the Si Substrate on the Transport and Magnetotransport Properties of Nanostructured Fe-Ag Thin Films―[Nov 09 2784-2787]. IEEE Transactions on Magnetics, 2009, 45, 3365-3365.	1.2	0

#	Article	IF	CITATIONS
73	Magnetic disorder in nanostructured <i>Fe</i> ₇ <i>Au</i> ₉₃ films and <i>Fe</i> ₁₄ <i>Au</i> ₈₆ powders. Journal of Physics: Conference Series, 2010, 200, 072028.	0.3	0
74	Magnetic properties of colloidal cobalt nanoclusters. Journal of Physics: Conference Series, 2010, 200, 072100.	0.3	0
75	Spin-glass-like freezing of inner and outer surface layers in hollow Fe <inf>2</inf> 0 <inf>3</inf> nanoparticles. , 2017, , .		0
76	Soft Ferromagnetic Microwires with Excellent Inductive Heating Properties for Clinical Hyperthermia Applications. Springer Series in Materials Science, 2017, , 151-167.	0.4	0
77	Correction to "Magnetic Study of Co-Doped Magnetosome Chains― Journal of Physical Chemistry C, 0, , .	1.5	0