List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7202783/publications.pdf Version: 2024-02-01

REN E KOOP

#	Article	IF	CITATIONS
1	Longâ€distance migration is a major factor driving local adaptation at continental scale in Coho salmon. Molecular Ecology, 2023, 32, 542-559.	2.0	14
2	Sablefish (<i>Anoplopoma fimbria</i>) parentage analyses in aquaculture. Aquaculture Research, 2022, 53, 1890-1895.	0.9	1
3	The Genomic Consistency of the Loss of Anadromy in an Arctic Fish (<i>Salvelinus alpinus</i>). American Naturalist, 2022, 199, 617-635.	1.0	5
4	An update of the salmon louse (<i>Lepeophtheirus salmonis</i>) reference genome assembly. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	3
5	Convergent geographic patterns between grizzly bear population genetic structure and Indigenous language groups in coastal British Columbia, Canada. Ecology and Society, 2021, 26, .	1.0	14
6	Genomic evidence of past and future climate-linked loss in a migratory Arctic fish. Nature Climate Change, 2021, 11, 158-165.	8.1	36
7	The rise and fall of the ancient northern pike master sex-determining gene. ELife, 2021, 10, .	2.8	24
8	Assessing the effects of genotype-by-environment interaction on epigenetic, transcriptomic, and phenotypic response in a Pacific salmon. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	15
9	Comparative regulomics supports pervasive selection on gene dosage following whole genome duplication. Genome Biology, 2021, 22, 103.	3.8	54
10	Detection of selection signatures in farmed coho salmon (Oncorhynchus kisutch) using dense genome-wide information. Scientific Reports, 2021, 11, 9685.	1.6	15
11	Environmental and genetic influences on fitness-related traits in a hatchery coho salmon population. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 852-868.	0.7	2
12	Genomic basis of deepâ€water adaptation in Arctic Charr (<i>Salvelinus alpinus</i>) morphs. Molecular Ecology, 2021, 30, 4415-4432.	2.0	13
13	The salmon louse genome: Copepod features and parasitic adaptations. Genomics, 2021, 113, 3666-3680.	1.3	17
14	Sexually Dimorphic Growth Stimulation in a Strain of Growth Hormone Transgenic Coho Salmon (Oncorhynchus kisutch). Marine Biotechnology, 2021, 23, 140-148.	1.1	4
15	The pink salmon genome: Uncovering the genomic consequences of a two-year life cycle. PLoS ONE, 2021, 16, e0255752.	1.1	14
16	Microbial communities associated with the parasitic copepod Lepeophtheirus salmonis. Marine Genomics, 2020, 49, 100688.	0.4	4
17	Limited genetic parallelism underlies recent, repeated incipient speciation in geographically proximate populations of an Arctic fish (<i>Salvelinus alpinus</i>). Molecular Ecology, 2020, 29, 4280-4294.	2.0	17
18	Demographic history shaped geographical patterns of deleterious mutation load in a broadly distributed Pacific Salmon. PLoS Genetics, 2020, 16, e1008348.	1.5	38

#	Article	IF	CITATIONS
19	Estimates of Autozygosity Through Runs of Homozygosity in Farmed Coho Salmon. Genes, 2020, 11, 490.	1.0	10
20	Resolving fineâ€scale population structure and fishery exploitation using sequenced microsatellites in a northern fish. Evolutionary Applications, 2020, 13, 1055-1068.	1.5	32
21	Parallelism in eco-morphology and gene expression despite variable evolutionary and genomic backgrounds in a Holarctic fish. PLoS Genetics, 2020, 16, e1008658.	1.5	73
22	The sockeye salmon genome, transcriptome, and analyses identifying population defining regions of the genome. PLoS ONE, 2020, 15, e0240935.	1.1	26
23	Carotenoid pigmentation in salmon: variation in expression at <i>BCO2-l</i> locus controls a key fitness trait affecting red coloration. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191588.	1.2	31
24	Standardized IMGT® Nomenclature of Salmonidae IGH Genes, the Paradigm of Atlantic Salmon and Rainbow Trout: From Genomics to Repertoires. Frontiers in Immunology, 2019, 10, 2541.	2.2	25
25	A genetic linkage map for the salmon louse (Lepeophtheirus salmonis): evidence for high male:female and inter-familial recombination rate differences. Molecular Genetics and Genomics, 2019, 294, 343-363.	1.0	7
26	Whole Genome Linkage Disequilibrium and Effective Population Size in a Coho Salmon (Oncorhynchus) Tj ETQq	0 0 0 0 rgBT 1.1	Oyerlock 10
27	Design and characterization of an 87k SNP genotyping array for Arctic charr (Salvelinus alpinus). PLoS ONE, 2019, 14, e0215008.	1.1	22
28	Effect of triploidy on liver gene expression in coho salmon (Oncorhynchus kisutch) under different metabolic states. BMC Genomics, 2019, 20, 336.	1.2	4

29	Sex-dependent dominance maintains migration supergene in rainbow trout. Nature Ecology and Evolution, 2019, 3, 1731-1742.	3.4	188
30	Avermectin treatment for Lepeophtheirus salmonis: Impacts on host (Salmo salar) and parasite immunophysiology. Aquaculture, 2019, 501, 488-501.	1.7	10
31	High level efficacy of lufenuron against sea lice (Lepeophtheirus salmonis) linked to rapid impact on moulting processes. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 174-188.	1.4	21
32	A 200K SNP chip reveals a novel Pacific salmon louse genotype linked to differential efficacy of emamectin benzoate. Marine Genomics, 2018, 40, 45-57.	0.4	16
33	Subcellular localization and characterization of estrogenic pathway regulators and mediators in Atlantic salmon spermatozoal cells. Histochemistry and Cell Biology, 2018, 149, 75-96.	0.8	7
34	Caligus rogercresseyi acetylcholinesterase types and variants: a potential marker for organophosphate resistance. Parasites and Vectors, 2018, 11, 570.	1.0	9
35	Regulatory processes that control haploid expression of salmon sperm mRNAs. BMC Research Notes, 2018, 11, 639.	0.6	1
36	The Arctic charr (Salvelinus alpinus) genome and transcriptome assembly. PLoS ONE, 2018, 13, e0204076.	1.1	83

3

#	Article	IF	CITATIONS
37	Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome. PLoS ONE, 2018, 13, e0195461.	1.1	85
38	Parallel epigenetic modifications induced by hatchery rearing in a Pacific salmon. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12964-12969.	3.3	170
39	Functional Annotation of All Salmonid Genomes (FAASC): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genomics, 2017, 18, 484.	1.2	99
40	Enhanced transcriptomic responses in the Pacific salmon louse Lepeophtheirus salmonis oncorhynchi to the non-native Atlantic Salmon Salmo salar suggests increased parasite fitness. BMC Genomics, 2017, 18, 110.	1.2	16
41	Effects of the vertically transmitted microsporidian Facilispora margolisi and the parasiticide emamectin benzoate on salmon lice (Lepeophtheirus salmonis). BMC Genomics, 2017, 18, 630.	1.2	16
42	Host–parasite transcriptomics during immunostimulant-enhanced rejection of salmon lice (<i>Lepeophtheirus salmonis</i>) by Atlantic salmon (<i>Salmo salar</i>). Facets, 2017, 2, 477-495.	1.1	17
43	Sex-biased gene expression and sequence conservation in Atlantic and Pacific salmon lice (Lepeophtheirus salmonis). BMC Genomics, 2016, 17, 483.	1.2	22
44	The Atlantic salmon genome provides insights into rediploidization. Nature, 2016, 533, 200-205.	13.7	1,021
45	Cypermethrin exposure induces metabolic and stress-related gene expression in copepodid salmon lice (Lepeophtheirus salmonis). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2016, 20, 74-84.	0.4	32
46	A PCR assay detects a male-specific duplicated copy of Anti-Müllerian hormone (amh) in the lingcod (Ophiodon elongatus). BMC Research Notes, 2016, 9, 230.	0.6	28
47	Multi-tissue transcriptome profiles for coho salmon (Oncorhynchus kisutch), a species undergoing rediploidization following whole-genome duplication. Marine Genomics, 2016, 25, 33-37.	0.4	19
48	A comprehensive analysis of teleost MHC class I sequences. BMC Evolutionary Biology, 2015, 15, 32.	3.2	81
49	Transcriptomic responses to emamectin benzoate in <scp>P</scp> acific and <scp>A</scp> tlantic <scp>C</scp> anada salmon lice <i><scp>L</scp>epeophtheirus salmonis</i> with differing levels of drug resistance. Evolutionary Applications, 2015, 8, 133-148.	1.5	35
50	Infectious hematopoietic necrosis virus (IHNV) persistence in Sockeye Salmon: influence on brain transcriptome and subsequent response to the viral mimic poly(I:C). BMC Genomics, 2015, 16, 634.	1.2	32
51	Differential modulation of resistance biomarkers in skin of juvenile and mature pink salmon, Oncorhynchus gorbuscha by the salmon louse, Lepeophtheirus salmonis. Fish and Shellfish Immunology, 2015, 47, 7-14.	1.6	11
52	Chemokine receptors in Atlantic salmon. Developmental and Comparative Immunology, 2015, 49, 79-95.	1.0	37
53	Signatures of resistance to Lepeophtheirus salmonis include a TH2-type response at the louse-salmon interface. Developmental and Comparative Immunology, 2015, 48, 178-191.	1.0	80
54	The Genome and Linkage Map of the Northern Pike (Esox lucius): Conserved Synteny Revealed between the Salmonid Sister Group and the Neoteleostei. PLoS ONE, 2014, 9, e102089.	1.1	122

#	Article	IF	CITATIONS
55	Comparison of Host Selection and Gene Expression of Adult Lepeophtheirus Salmonis and Salmo Salar During a Cohabitation of Initially Infected and Uninfected Fish. Journal of Aquaculture Research & Development, 2014, 03, .	0.4	3
56	Comparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis. BMC Genomics, 2014, 15, 200.	1.2	107
57	Atlantic salmon possesses two clusters of type I interferon receptor genes on different chromosomes, which allows for a larger repertoire of interferon receptors than in zebrafish and mammals. Developmental and Comparative Immunology, 2014, 47, 275-286.	1.0	41
58	Divergent immunity and energetic programs in the gills of migratory and resident <i><scp>O</scp>ncorhynchus mykiss</i> . Molecular Ecology, 2014, 23, 1952-1964.	2.0	33
59	Transcriptional responses in a <i><scp>D</scp>rosophila</i> defensive symbiosis. Molecular Ecology, 2014, 23, 1558-1570.	2.0	44
60	Sex-specific expression and localization of aromatase and its regulators during embryonic and larval development of Atlantic salmon. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2014, 168, 33-44.	0.7	8
61	Microsatellite loci for genetic analysis of the arctic gadids Boreogadus saida and Arctogadus glacialis. Conservation Genetics Resources, 2013, 5, 445-448.	0.4	12
62	Genomics of sablefish (Anoplopoma fimbria): expressed genes, mitochondrial phylogeny, linkage map and identification of a putative sex gene. BMC Genomics, 2013, 14, 452.	1.2	99
63	Sex-specific expression, synthesis and localization of aromatase regulators in one-year-old Atlantic salmon ovaries and testes. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2013, 164, 236-246.	0.7	21
64	Comprehensive analysis of MHC class II genes in teleost fish genomes reveals dispensability of the peptide-loading DM system in a large part of vertebrates. BMC Evolutionary Biology, 2013, 13, 260.	3.2	86
65	Early response of gene expression in the distal intestine of Atlantic salmon (Salmo salar L.) during the development of soybean meal induced enteritis. Fish and Shellfish Immunology, 2013, 34, 599-609.	1.6	171
66	How does sequence variability affect <i>de novo</i> assembly quality?. Journal of Natural History, 2013, 47, 901-910.	0.2	5
67	Comparative defense-associated responses in salmon skin elicited by the ectoparasite Lepeophtheirus salmonis. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2012, 7, 100-109.	0.4	47
68	Characterization of the Atlantic salmon (Salmo salar) brain-type fatty acid binding protein (fabp7) genes reveals the fates of teleost fabp7 genes following whole genome duplications. Gene, 2012, 504, 253-261.	1.0	11
69	Transcriptomics of coping strategies in freeâ€swimming <i>Lepeophtheirus salmonis</i> (Copepoda) larvae responding to abiotic stress. Molecular Ecology, 2012, 21, 6000-6014.	2.0	32
70	Identification of Surrogates of Protection against Yersiniosis in Immersion Vaccinated Atlantic Salmon. PLoS ONE, 2012, 7, e40841.	1.1	37
71	Identification of olfactory receptor genes in Atlantic salmon <i>Salmo salar</i> . Journal of Fish Biology, 2012, 81, 559-575.	0.7	33
72	Genomic Resources for Sea Lice: Analysis of ESTs and Mitochondrial Genomes. Marine Biotechnology, 2012, 14, 155-166.	1.1	39

#	Article	IF	CITATIONS
73	A transcriptomic scan for positively selected genes in two closely related marine fishes: Sebastes caurinus and S. rastrelliger. Marine Genomics, 2011, 4, 93-98.	0.4	11
74	Ecological transcriptomics of lake-type and riverine sockeye salmon (Oncorhynchus nerka). BMC Ecology, 2011, 11, 31.	3.0	12
75	GO Trimming: Systematically reducing redundancy in large Gene Ontology datasets. BMC Research Notes, 2011, 4, 267.	0.6	86
76	Assessment of population structure in Pacific Lepeophtheirus salmonis (KrÃyer) using single nucleotide polymorphism and microsatellite genetic markers. Aquaculture, 2011, 320, 183-192.	1.7	29
77	Differentiating size-dependent responses of juvenile pink salmon (Oncorhynchus gorbuscha) to sea lice (Lepeophtheirus salmonis) infections. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2011, 6, 213-223.	0.4	32
78	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2010 – 30 September 2010. Molecular Ecology Resources, 2011, 11, 219-222.	2.2	48
79	Expression of olfactory receptors in different life stages and life histories of wild Atlantic salmon (Salmo salar). Molecular Ecology, 2011, 20, 4059-4069.	2.0	46
80	General and family-specific gene expression responses to viral hemorrhagic septicaemia virus infection in rainbow trout (Oncorhynchus mykiss). Molecular Immunology, 2011, 48, 1046-1058.	1.0	18
81	Comparative Genomics Identifies Candidate Genes for Infectious Salmon Anemia (ISA) Resistance in Atlantic Salmon (Salmo salar). Marine Biotechnology, 2011, 13, 232-241.	1.1	50
82	A 44K microarray dataset of the changing transcriptome in developing Atlantic salmon (Salmo salar) Tj ETQq0 0	0 rgBT /Ov 0.6	erlock 10 Tf
83	Regulation and expression of sexual differentiation factors in embryonic and extragonadal tissues of Atlantic salmon. BMC Genomics, 2011, 12, 31.	1.2	28
84	Identification of the Sex Chromosomes of Brown Trout <i>(Salmo trutta)</i> and Their Comparison with the Corresponding Chromosomes in Atlantic Salmon <i>(Salmo salar)</i> and Rainbow Trout <i>(Oncorhynchus mykiss)</i> . Cytogenetic and Genome Research, 2011, 133, 25-33.	0.6	40
85	Identification of genes associated with heat tolerance in Arctic charr exposed to acute thermal stress. Physiological Genomics, 2011, 43, 685-696.	1.0	82
86	Ribosomal genes and heat shock proteins as putative markers for chronic, sublethal heat stress in Arctic charr: applications for aquaculture and wild fish. Physiological Genomics, 2011, 43, 1056-1064.	1.0	41
87	Population genetic structure of the parasitic copepod Lepeophtheirus salmonis throughout the Atlantic. Marine Ecology - Progress Series, 2011, 427, 161-172.	0.9	36
88	Comprehensive analysis of MHC class I genes from the U-, S-, and Z-lineages in Atlantic salmon. BMC Genomics, 2010, 11, 154.	1.2	50
89	Salmo salar and Esox lucius full-length cDNA sequences reveal changes in evolutionary pressures on a post-tetraploidization genome. BMC Genomics, 2010, 11, 279.	1.2	163
90	High gene expression of inflammatory markers and IL-17A correlates with severity of injection site reactions of Atlantic salmon vaccinated with oil-adjuvanted vaccines. BMC Genomics, 2010, 11, 336.	1.2	49

#	Article	IF	CITATIONS
91	Evolution of duplicated IgH loci in Atlantic salmon, Salmo salar. BMC Genomics, 2010, 11, 486.	1.2	75
92	Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire. BMC Genomics, 2010, 11, 539.	1.2	25
93	Riskâ€based analysis of polychlorinated biphenyl toxicity in harbor seals. Integrated Environmental Assessment and Management, 2010, 6, 631-640.	1.6	42
94	Comparative genomic analysis of Atlantic salmon, Salmo salar, from Europe and North America. BMC Genetics, 2010, 11, 105.	2.7	26
95	Grayling (Thymallinae) phylogeny within salmonids: complete mitochondrial DNA sequences of <i>Thymallus arcticus</i> and <i>Thymallus thymallus</i> . Journal of Fish Biology, 2010, 76, 395-400.	0.7	29
96	Flatfish at seamount hydrothermal vents show strong genetic divergence between volcanic arcs. Marine Ecology, 2010, 31, 158-167.	0.4	19
97	Zonadhesin Is Essential for Species Specificity of Sperm Adhesion to the Egg Zona Pellucida. Journal of Biological Chemistry, 2010, 285, 24863-24870.	1.6	74
98	Regulation, expression and characterization of aromatase (cyp19b1) transcripts in ovary and testis of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2010, 155, 118-125.	0.7	22
99	Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biology, 2010, 11, 403.	3.8	250
100	Genomic Organization and Evolution of the Vomeronasal Type 2 Receptor-Like (OlfC) Gene Clusters in Atlantic Salmon, Salmo salar. Molecular Biology and Evolution, 2009, 26, 1117-1125.	3.5	25
101	Assignment of Atlantic salmon (Salmo salar) linkage groups to specific chromosomes: Conservation of large syntenic blocks corresponding to whole chromosome arms in rainbow trout (Oncorhynchus mykiss). BMC Genetics, 2009, 10, 46.	2.7	96
102	Identification of a molecular marker for type A spermatogonia by microarray analysis using gonadal cells from p <i>vasa</i> â€ <i>GFP</i> transgenic rainbow trout (<i>Oncorhynchus mykiss</i>). Molecular Reproduction and Development, 2009, 76, 246-254.	1.0	21
103	Genomic organization of Atlantic salmon (Salmo salar) fatty acid binding protein (fabp2) genes reveals independent loss of duplicate loci in teleosts. Marine Genomics, 2009, 2, 193-200.	0.4	13
104	The Sex Determining Loci and Sex Chromosomes in the Family Salmonidae. Sexual Development, 2009, 3, 78-87.	1.1	76
105	Rainbow Smelt (Osmerus mordax) Genomic Library and EST Resources. Marine Biotechnology, 2008, 10, 487-91.	1.1	21
106	EST and Mitochondrial DNA Sequences Support a Distinct Pacific Form of Salmon Louse, Lepeophtheirus salmonis. Marine Biotechnology, 2008, 10, 741-749.	1.1	50
107	Sixteen Type 1 polymorphic microsatellite markers from Chinook salmon (Oncorhynchus tshawytscha) expressed sequence tags. Animal Genetics, 2008, 39, 84-85.	0.6	4
108	Expansion of the genomics research on Atlantic salmon Salmo salar L. project (GRASP) microarray tools. Journal of Fish Biology, 2008, 72, 2051-2070.	0.7	37

#	Article	IF	CITATIONS
109	A linkage map of the Atlantic salmon (Salmo salar) based on EST-derived SNP markers. BMC Genomics, 2008, 9, 223.	1.2	150
110	Assessing the feasibility of GS FLX Pyrosequencing for sequencing the Atlantic salmon genome. BMC Genomics, 2008, 9, 404.	1.2	72
111	Isolation, characterization and comparison of Atlantic and Chinook salmon growth hormone 1 and 2. BMC Genomics, 2008, 9, 522.	1.2	27
112	A salmonid EST genomic study: genes, duplications, phylogeny and microarrays. BMC Genomics, 2008, 9, 545.	1.2	145
113	Distribution of ancestral proto-Actinopterygian chromosome arms within the genomes of 4R-derivative salmonid fishes (Rainbow trout and Atlantic salmon). BMC Genomics, 2008, 9, 557.	1.2	107
114	Genomic organization and characterization of two vomeronasal 1 receptor-like genes (ora1 and ora2) in Atlantic salmon Salmo salar. Marine Genomics, 2008, 1, 23-31.	0.4	22
115	Functional adaptive diversity of the Atlantic salmon T-cell receptor gamma locus. Molecular Immunology, 2008, 45, 2150-2157.	1.0	46
116	Coordinated down-regulation of the antigen processing machinery in the gills of amoebic gill disease-affected Atlantic salmon (Salmo salar L.). Molecular Immunology, 2008, 45, 2581-2597.	1.0	83
117	Microarray analysis reveals differences in expression of cell surface and extracellular matrix components during development of the trout ovary and testis. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2008, 3, 78-90.	0.4	10
118	Striking antigen recognition diversity in the Atlantic salmon T-cell receptor α∫δlocus. Developmental and Comparative Immunology, 2008, 32, 204-212.	1.0	53
119	Effects of Diesel on Survival, Growth, and Gene Expression in Rainbow Trout (<i>Oncorhynchus) Tj ETQq1 1 0.7</i>	84314 rgB 4.6	T /Qyerlock I
120	<i>ARS2</i> Is a Conserved Eukaryotic Gene Essential for Early Mammalian Development. Molecular and Cellular Biology, 2008, 28, 1503-1514.	1.1	49
121	A Survey of Expressed Sequence Tags from the Rainbow Trout (<i>Oncorhynchus Mykiss</i>) Pituitary. Animal Biotechnology, 2007, 18, 213-230.	0.7	3
122	The genomic sequence of the bovine T cell receptor gamma TRG loci and localization of the TRGC5 cassette. Veterinary Immunology and Immunopathology, 2007, 115, 346-356.	0.5	48
123	An extensive resource of single nucleotide polymorphism markers associated with Atlantic salmon (Salmo salar) expressed sequences. Aquaculture, 2007, 265, 82-90.	1.7	110
124	Toxicogenomic responses in rainbow trout (Oncorhynchus mykiss) hepatocytes exposed to model chemicals and a synthetic mixture. Aquatic Toxicology, 2007, 81, 293-303.	1.9	68
125	Contaminant-associated disruption of vitamin A and its receptor (retinoic acid receptor α) in free-ranging harbour seals (Phoca vitulina). Aquatic Toxicology, 2007, 81, 319-328.	1.9	65
126	TCR and CD3 antibody crossâ€reactivity in 44 species. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 925-933.	1.1	18

#	Article	IF	CITATIONS
127	Genomic organization of duplicated major histocompatibility complex class I regions in Atlantic salmon (Salmo salar). BMC Genomics, 2007, 8, 251.	1.2	60
128	Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genomics, 2007, 8, 422.	1.2	128
129	Identification of the sex-determining locus of Atlantic salmon <i>(Salmo salar)</i> on chromosome 2. Cytogenetic and Genome Research, 2006, 112, 152-159.	0.6	47
130	Comparative analysis of the paired immunoglobulin-like receptor (PILR) locus in six mammalian genomes: duplication, conversion, and the birth of new genes. Physiological Genomics, 2006, 27, 201-218.	1.0	27
131	Transcriptome profiling the gills of amoebic gill disease (AGD)-affected Atlantic salmon (Salmo) Tj ETQq1 1 0.78	4314 rgB ⁻ 1.0	⊺/Overlock I 101
132	Expression of morphogenic genes in mature ovarian and testicular tissues: Potential stem-cell niche markers and patterning factors. Molecular Reproduction and Development, 2006, 73, 142-152.	1.0	31
133	Multiple microarray platforms utilized for hepatic gene expression profiling of GH transgenic coho salmon with and without ration restriction. Journal of Molecular Endocrinology, 2006, 37, 259-282.	1.1	69
134	Sequence Analysis and Organization of the Neodiprion abietis Nucleopolyhedrovirus Genome. Journal of Virology, 2006, 80, 6952-6963.	1.5	38
135	Type I microsatellite markers from Atlantic salmon (Salmo salar) expressed sequence tags. Molecular Ecology Notes, 2005, 5, 762-766.	1.7	24
136	Fish and chips: Various methodologies demonstrate utility of a 16,006-gene salmonid microarray. BMC Genomics, 2005, 6, 126.	1.2	178
137	Expression and genomic organization of zonadhesin-like genes in three species of fish give insight into the evolutionary history of a mosaic protein. BMC Genomics, 2005, 6, 165.	1.2	9
138	A highly redundant BAC library of Atlantic salmon (Salmo salar): an important tool for salmon projects. BMC Genomics, 2005, 6, 50.	1.2	79
139	A Comprehensive Survey of the Genes Involved in Maturation and Development of the Rainbow Trout Ovary1. Biology of Reproduction, 2005, 72, 687-699.	1.2	95
140	A physical map of the genome of Atlantic salmon, Salmo salar. Genomics, 2005, 86, 396-404.	1.3	97
141	Development and Application of a Salmonid EST Database and cDNA Microarray: Data Mining and Interspecific Hybridization Characteristics. Genome Research, 2004, 14, 478-490.	2.4	279
142	Microarray analyses identify molecular biomarkers of Atlantic salmon macrophage and hematopoietic kidney response toPiscirickettsia salmonisinfection. Physiological Genomics, 2004, 20, 21-35.	1.0	163
143	Evolution of duplicated growth hormone genes in autotetraploid salmonid fishes. Genome, 2004, 47, 714-723.	0.9	35
144	Analysis of the conservation of synteny between Fugu and human chromosome 12. BMC Genomics, 2003. 4. 30.	1.2	6

#	Article	IF	CITATIONS
145	Sequence analysis of a rainbow trout cDNA library and creation of a gene index. Cytogenetic and Genome Research, 2003, 102, 347-354.	0.6	97
146	Identification of a novel lipase gene mutated in lpd mice with hypertriglyceridemia and associated with dyslipidemia in humans. Human Molecular Genetics, 2003, 12, 1131-1143.	1.4	27
147	Human Chromosome 7: DNA Sequence and Biology. Science, 2003, 300, 767-772.	6.0	185
148	Recent segmental and gene duplications in the mouse genome. Genome Biology, 2003, 4, R47.	13.9	76
149	Population Structure of Sockeye Salmon of the Central Coast of British Columbia: Implications for Recovery Planning. North American Journal of Fisheries Management, 2003, 23, 703-720.	0.5	15
150	Evolution of the Dawson caribou (Rangifer tarandus dawsoni). Canadian Journal of Zoology, 2002, 80, 956-960.	0.4	15
151	Geographic Variation of Multiple Paternity in the Common Garter Snake (Thamnophis sirtalis). Copeia, 2002, 2002, 15-23.	1.4	43
152	Rett Syndrome: Investigation of Nine Patients, including PET Scan. Canadian Journal of Neurological Sciences, 2002, 29, 345-357.	0.3	36
153	Genomic sequencing of the bovine T cell receptor beta locus. Veterinary Immunology and Immunopathology, 2002, 87, 439-441.	0.5	11
154	Population genetic analysis of white sturgeon (Acipenser transmontanus) in the Fraser River. Journal of Applied Ichthyology, 2002, 18, 307-312.	0.3	29
155	Cloning and Characterization of Three Novel Genes, ALS2CR1, ALS2CR2, and ALS2CR3, in the Juvenile Amyotrophic Lateral Sclerosis (ALS2) Critical Region at Chromosome 2q33–q34: Candidate Genes for ALS2. Genomics, 2001, 71, 200-213.	1.3	46
156	Isolation of a Ubiquitin-like (UBL5) Gene from a Screen Identifying Highly Expressed and Conserved Iris Genes. Genomics, 2001, 71, 252-255.	1.3	37
157	Comparative Genomics of the Human and Mouse T Cell Receptor Loci. Immunity, 2001, 15, 337-349.	6.6	163
158	Glacial biogeography of North American coho salmon (Oncorhynchus kisutch). Molecular Ecology, 2001, 10, 2775-2785.	2.0	62
159	ERCC1: A comparative genomic perspective. Environmental and Molecular Mutagenesis, 2001, 38, 209-215.	0.9	42
160	Comparative analysis of the gene-dense ACHE/TFR2 region on human chromosome 7q22 with the orthologous region on mouse chromosome 5. Nucleic Acids Research, 2001, 29, 1352-1365.	6.5	48
161	Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nature Genetics, 2000, 26, 319-323.	9.4	309
162	Comparative genomic sequence analysis of the Williams syndrome region (LIMK1-RFC2) of human Chromosome 7q11.23. Mammalian Genome, 2000, 11, 890-898.	1.0	31

#	Article	IF	CITATIONS
163	A 39-kb Sequence Around a Blackbird Mhc Class II Gene: Ghost of Selection Past and Songbird Genome Architecture. Molecular Biology and Evolution, 2000, 17, 1384-1395.	3.5	43
164	Human and Mouse DNA Sequence Comparisons: Further Evidence for a Mosaic Model of Genomic Evolution. Computational Biology, 2000, , 59-69.	0.1	0
165	Coastal Refugia and Postglacial Recolonization Routes: A Reply to Demboski, Stone, and Cook. Evolution; International Journal of Organic Evolution, 1999, 53, 2013.	1.1	15
166	Determinants of DNA Sequence Specificity of the Androgen, Progesterone, and Glucocorticoid Receptors: Evidence for Differential Steroid Receptor Response Elements. Molecular Endocrinology, 1999, 13, 2090-2107.	3.7	181
167	Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nature Genetics, 1999, 22, 336-345.	9.4	1,609
168	Easy detection of all T cell receptor gamma (TCRG) gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia, 1999, 13, 1620-1626.	3.3	29
169	Genomic sequence comparison of the human and mouse adenosine deaminase gene regions. Mammalian Genome, 1999, 10, 95-101.	1.0	21
170	The Structure and Evolution of the Ribosomal Proteins Encoded in the spc Operon of the Archaeon (Crenarchaeota) Sulfolobus acidocaldarius. Molecular Phylogenetics and Evolution, 1999, 12, 177-185.	1.2	9
171	Partial 28S rDNA Sequences and the Antiquity of Hydrothermal Vent Endemic Gastropods. Molecular Phylogenetics and Evolution, 1999, 13, 255-274.	1.2	49
172	A Yeast Artificial Chromosome-Based Physical Map of the Juvenile Amyotrophic Lateral Sclerosis (ALS2) Critical Region on Human Chromosome 2q33–q34. Genomics, 1999, 55, 106-112.	1.3	18
173	Determinants of DNA Sequence Specificity of the Androgen, Progesterone, and Glucocorticoid Receptors: Evidence for Differential Steroid Receptor Response Elements. Molecular Endocrinology, 1999, 13, 2090-2107.	3.7	45
174	Cell death attenuation by `Usurpin', a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death and Differentiation, 1998, 5, 271-288.	5.0	293
175	Loss-of-function mutations in a calcium-channel α1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nature Genetics, 1998, 19, 264-267.	9.4	474
176	Correlation of UV-induced mutational spectra and the in vitro damage distribution at the human hprt gene. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 403, 237-248.	0.4	6
177	Cloning and characterization of the kinetoplastid membrane protein-11 gene locus of Trypanosoma brucei1Note: Nucleotide sequence data reported in this paper are available in the EMBL, GenBankâ,,¢ and DDJB databases under the accession number AF028726.1. Molecular and Biochemical Parasitology, 1998, 91. 359-363.	0.5	12
178	Mutations of the Forkhead/Winged-Helix Gene, FKHL7, in Patients with Axenfeld-Rieger Anomaly. American Journal of Human Genetics, 1998, 63, 1316-1328.	2.6	298
179	A conserved sequence block in murine and human T cell receptor (TCR) JÂ region is a composite element that enhances TCR Â enhancer activity and binds multiple nuclear factors. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3839-3844.	3.3	14
180	Isolation and characterization of coho salmon (Oncorhynchus kisutch) microsatellites and their use in other salmonids. Molecular Ecology, 1998, 7, 1614-6.	2.0	76

#	Article	IF	CITATIONS
181	North American Black Bear mtDNA Phylogeography: Implications for Morphology and the Haida Gwaii Glacial Refugium Controversy. Evolution; International Journal of Organic Evolution, 1997, 51, 1647.	1.1	52
182	NORTH AMERICAN BLACK BEAR <scp>mt</scp> DNA PHYLOGEOGRAPHY: IMPLICATIONS FOR MORPHOLOGY AND THE HAIDA GWAII GLACIAL REFUGIUM CONTROVERSY. Evolution; International Journal of Organic Evolution, 1997, 51, 1647-1653.	1.1	77
183	A human homolog of the vaccinia virus HindIII K4L gene is a member of the phospholipase D superfamily. Virus Research, 1997, 48, 11-18.	1.1	23
184	Evolution and Selection of Primate T Cell Antigen Receptor BV8 Gene Subfamily. Molecular Phylogenetics and Evolution, 1997, 8, 51-64.	1.2	8
185	Identification of Genes from a 500-kb Region at 7q11.23 That Is Commonly Deleted in Williams Syndrome Patients. Genomics, 1996, 36, 328-336.	1.3	108
186	The Complete 685-Kilobase DNA Sequence of the Human beta T Cell Receptor Locus. Science, 1996, 272, 1755-1762.	6.0	429
187	Pufferfish and new paradigm for comparative genome analysis Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1363-1365.	3.3	18
188	Approaches to Detection of Distantly Related Proteins by Database Searches. BioTechniques, 1996, 21, 1118-1125.	0.8	5
189	Analysis and Comparison of the Mouse and Human Immunoglobulin Heavy Chain JH–Cμ–CÎ′Locus. Molecular Phylogenetics and Evolution, 1996, 5, 33-49.	1.2	14
190	Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nature Genetics, 1996, 14, 353-356.	9.4	621
191	Human and rodent DNA sequence comparisons: a mosaic model of genomic evolution. Trends in Genetics, 1995, 11, 367-371.	2.9	66
192	Human and Mouse T-Cell Receptor Loci: Genomics, Evolution, Diversity, and Serendipity. Annals of the New York Academy of Sciences, 1995, 758, 390-412.	1.8	35
193	Human and rodent genomes: Discrepant patterns of DNA sequence similarity. Animal Biotechnology, 1994, 5, 89-101.	0.7	1
194	Structural analysis of the mouse T-cell receptor Tcra V2 subfamily. Immunogenetics, 1994, 40, 116-22.	1.2	21
195	The expression of mouse T-cell receptor TCRDV genes in BALB/c spleen. Immunogenetics, 1994, 40, 271-9.	1.2	5
196	Methods in Enzymology Vol. 224. Molecular Evolution: Producing the Biochemical Data, Elizabeth A. Zimmer, Thomas J. White, Rebecca L. Cann, and Allan C. Wilson, Academic Press, San Diego, 1993, 725 pp., \$95.00 Molecular Phylogenetics and Evolution, 1994, 3, 279-280.	1.2	0
197	Striking sequence similarity over almost 100 kilobases of human and mouse T–cell receptor DNA. Nature Genetics, 1994, 7, 48-53.	9.4	160
198	The Human T-Cell Receptor TCRAC/TCRDC (Cα/Cdelta;) Region: Organization, Sequence, and Evolution of 97.6 kb of DNA. Genomics, 1994, 19, 478-493.	1.3	171

#	Article	IF	CITATIONS
199	Nucleotide Sequence Analysis of 77.7 kb of the Human Vβ T-Cell Receptor Gene Locus: Direct Primer-Walking Using Cosmid Template DNAs. Genomics, 1994, 20, 149-168.	1.3	41
200	Organization, Sequence, and Function of 34.5 kb of Genomic DNA Encompassing Several Murine T-Cell Receptor α∫δVariable Gene Segments. Genomics, 1994, 20, 258-266.	1.3	16
201	The complete nucleotide sequence of cosmid vector pTL5: location and origin of its genetic components. Gene, 1994, 147, 77-79.	1.0	1
202	A simple method using T4 DNA polymerase to clone polymerase chain reaction products. BioTechniques, 1994, 17, 236-8.	0.8	20
203	DNA sequence determination by hybridization: a strategy for efficient large-scale sequencing. Science, 1993, 260, 1649-1652.	6.0	227
204	An Experimentally Derived Data Set Constructed for Testing Large-Scale DNA Sequence Assembly Algorithms. Genomics, 1993, 15, 673-676.	1.3	21
205	Restricted usage of T-cell receptor VÎ \pm sequence and variable-joining pairs after normal T-cell development and bone marrow transplantation. Human Immunology, 1993, 37, 178-184.	1.2	6
206	Human and Mouse T-Cell-receptor Loci: The Importance of Comparative Large-scale DNA Sequence Analyses. Cold Spring Harbor Symposia on Quantitative Biology, 1993, 58, 339-348.	2.0	18
207	Sequence length and error analysis of Sequenase and automated Taq cycle sequencing methods. BioTechniques, 1993, 14, 442-7.	0.8	43
208	Complete nucleotide sequence of the cosmid vector pWE15A. Nucleic Acids Research, 1992, 20, 3786-3786.	6.5	1
209	Nucleotide sequence analysis of 95 kb near the 3′ end of the murine T-cell receptor αδ chain locus: Strategy and methodology. Genomics, 1992, 13, 1198-1208.	1.3	53
210	Organization, structure, and function of 95 kb of DNA spanning the murine T-cell receptor CαCδ region. Genomics, 1992, 13, 1209-1230.	1.3	139
211	Model genomes: The benefits of analysing homologous human and mouse sequences. Trends in Biotechnology, 1992, 10, 19-22.	4.9	10
212	Large-scale DNA sequencing. Current Opinion in Biotechnology, 1991, 2, 92-101.	3.3	21
213	Large-scale and automated DNA sequence determination. Science, 1991, 254, 59-67.	6.0	343
214	Primate evolution at the DNA level and a classification of hominoids. Journal of Molecular Evolution, 1990, 30, 260-266.	0.8	129
215	Sequencing reactions in microtiter plates. BioTechniques, 1990, 9, 32, 34-7.	0.8	4
216	Establishment and characterization of a new human Burkitt's lymphoma cell line (WSU-BL). Cancer, 1989, 64, 1041-1048.	2.0	10

#	Article	IF	CITATIONS
217	Molecular phylogeny of the family of apes and humans. Genome, 1989, 31, 316-335.	0.9	76
218	A molecular view of primate phylogeny and important systematic and evolutionary questions Molecular Biology and Evolution, 1989, 6, 580-612.	3.5	115
219	Tarsius δ- and Î2-globin genes: conversions, evolution, and systematic implications. Journal of Biological Chemistry, 1989, 264, 68-79.	1.6	76
220	Implications of the Diversity of the Immunoglobulin Gene Superfamily. Cold Spring Harbor Symposia on Quantitative Biology, 1989, 54, 15-29.	2.0	20
221	Tarsius delta- and beta-globin genes: conversions, evolution, and systematic implications. Journal of Biological Chemistry, 1989, 264, 68-79.	1.6	59
222	Embryonic ε and γ globin genes of a prosimian primate (Galago crassicaudatus). Journal of Molecular Biology, 1988, 203, 439-455.	2.0	353
223	Molecular systematics of higher primates: genealogical relations and classification Proceedings of the United States of America, 1988, 85, 7627-7631.	3.3	125
224	Evolutionary and developmental aspects of two hemoglobin beta-chain genes (epsilon M and beta M) of opossum Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3893-3897.	3.3	50
225	Rhesus fetal globin genes. Concerted gene evolution in the descent of higher primates Journal of Biological Chemistry, 1988, 263, 12427-12438.	1.6	27
226	Rhesus fetal globin genes. Concerted gene evolution in the descent of higher primates. Journal of Biological Chemistry, 1988, 263, 12427-38.	1.6	16
227	Primary Structure and Functional Properties of the Hemoglobin from the Free-Tailed BatTadarida brasiliensis(Chiroptera). Small Effect of Carbon Dioxide on Oxygen Affinity. Biological Chemistry Hoppe-Seyler, 1987, 368, 681-690.	1.4	7
228	The Primary Structure of the Pallid Bat(Antrozous pallidus,Chiroptera) Hänoglobin. Biological Chemistry Hoppe-Seyler, 1987, 368, 1197-1202.	1.4	4
229	Orangutan fetal globin genes. Nucleotide sequence reveal multiple gene conversions during hominid phylogeny Journal of Biological Chemistry, 1987, 262, 7472-7483.	1.6	53
230	Globins: A Case Study in Molecular Phylogeny. Cold Spring Harbor Symposia on Quantitative Biology, 1987, 52, 875-890.	2.0	116
231	Orangutan fetal globin genes. Nucleotide sequence reveal multiple gene conversions during hominid phylogeny. Journal of Biological Chemistry, 1987, 262, 7472-83.	1.6	34
232	Primate Îglobin DNA sequences and man's place among the great apes. Nature, 1986, 319, 234-238.	13.7	233
233	Nucleotide sequence and evolution of the orangutan ε globin gene region and surrounding Alu repeats. Journal of Molecular Evolution, 1986, 24, 94-102.	0.8	62
234	The Primary Structure of a Mouse-Eared Bat(Myotis velifer,Chiroptera) Hemoglobin. Biological Chemistry Hoppe-Seyler, 1986, 367, 1243-1250.	1.4	7

#	Article	IF	CITATIONS
235	Diploidy and triploidy in the hybrid minnow,Phoxinus eos x Phoxinus neogaeus (Pisces: Cyprinidae). Experientia, 1985, 41, 505-507.	1.2	15
236	Chimpanzee fetal G gamma and A gamma globin gene nucleotide sequences provide further evidence of gene conversions in hominine evolution Molecular Biology and Evolution, 1985, 2, 370-89.	3.5	49
237	Cladistical analysis of primitive C-band sequences for the karyotype of the ancestor of the Cricetidae complex of rodents. Genetica, 1984, 64, 199-208.	0.5	32
238	The Îglobin gene. Journal of Molecular Biology, 1984, 180, 803-823.	2.0	145
239	Adaptive nature of chromosomal rearrangement: differential fitness in pocket gophers. Genetica, 1983, 61, 161-164.	0.5	24
240	Resolving Systematic Relationships With G-bands: a Study of Five Genera of South American Cricetine Rodents. Systematic Biology, 1983, 32, 403-416.	2.7	20
241	Numerous chromosomal polymorphisms in a natural population of rice rats (<i>Oryzomys</i> , Cricetidae). Cytogenetic and Genome Research, 1983, 35, 131-135.	0.6	27
242	Resolving Systematic Relationships with G-Bands: A Study of Five Genera of South American Cricetine Rodents. Systematic Zoology, 1983, 32, 403.	1.6	39
243	Salmonid DNA Microarrays and Other Tools for Functional Genomics Research. , 0, , 369-412.		15
244	Genomics and Genome Sequencing: Benefits for Finfish Aquaculture. , 0, , .		2