
Iqbal Hamza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7202576/publications.pdf Version: 2024-02-01

LOBAL HAMZA

#	Article	IF	CITATIONS
1	Macrophages and Iron Metabolism. Immunity, 2016, 44, 492-504.	14.3	301
2	Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature, 2008, 453, 1127-1131.	27.8	275
3	Lack of heme synthesis in a free-living eukaryote. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4270-4275.	7.1	211
4	One ring to rule them all: Trafficking of heme and heme synthesis intermediates in the metazoans. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1617-1632.	4.1	190
5	HRG1 Is Essential for Heme Transport from the Phagolysosome of Macrophages during Erythrophagocytosis. Cell Metabolism, 2013, 17, 261-270.	16.2	183
6	Trafficking of Heme and Porphyrins in Metazoa. Chemical Reviews, 2009, 109, 4596-4616.	47.7	170
7	Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1215-1220.	7.1	160
8	Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7539-7544.	7.1	154
9	The Bacterial Irr Protein Is Required for Coordination of Heme Biosynthesis with Iron Availability. Journal of Biological Chemistry, 1998, 273, 21669-21674.	3.4	142
10	Macrophages and iron trafficking at the birth and death of red cells. Blood, 2015, 125, 2893-2897.	1.4	142
11	Iron and Porphyrin Trafficking in Heme Biogenesis. Journal of Biological Chemistry, 2010, 285, 26753-26759.	3.4	116
12	Regulation of intracellular heme trafficking revealed by subcellular reporters. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5144-52.	7.1	98
13	The Heme Biosynthetic Pathway of the Obligate Wolbachia Endosymbiont of Brugia malayi as a Potential Anti-filarial Drug Target. PLoS Neglected Tropical Diseases, 2009, 3, e475.	3.0	95
14	Heme Mobilization in Animals: A Metallolipid's Journey. Accounts of Chemical Research, 2016, 49, 1104-1110.	15.6	92
15	Heme Uptake by Leishmania amazonensis Is Mediated by the Transmembrane Protein LHR1. PLoS Pathogens, 2012, 8, e1002795.	4.7	88
16	Fur-independent regulation of iron metabolism by Irr in Bradyrhizobium japonicum. Microbiology (United Kingdom), 2000, 146, 669-676.	1.8	70
17	The Nematode C. elegans as an Animal Model to Explore Toxicology In Vivo: Solid and Axenic Growth Culture Conditions and Compound Exposure Parameters. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2007, 31, Unit1.9.	1.1	69
18	Intracellular Trafficking of Porphyrins. ACS Chemical Biology, 2006, 1, 627-629.	3.4	68

Iqbal Hamza

#	Article	IF	CITATIONS
19	Copper chaperones for cytochrome c oxidase and human disease. Journal of Bioenergetics and Biomembranes, 2002, 34, 381-388.	2.3	61
20	Control of Metazoan Heme Homeostasis by a Conserved Multidrug Resistance Protein. Cell Metabolism, 2014, 19, 1008-1019.	16.2	61
21	Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Frontiers in Pharmacology, 2014, 5, 126.	3.5	58
22	Topologically Conserved Residues Direct Heme Transport in HRG-1-related Proteins. Journal of Biological Chemistry, 2012, 287, 4914-4924.	3.4	55
23	Characterization of plasma labile heme in hemolytic conditions. FEBS Journal, 2017, 284, 3278-3301.	4.7	55
24	Molecular Mechanisms of Iron and Heme Metabolism. Annual Review of Nutrition, 2022, 42, 311-335.	10.1	54
25	An Intercellular Heme-Trafficking Protein Delivers Maternal Heme to the Embryo during Development in C.Âelegans. Cell, 2011, 145, 720-731.	28.9	50
26	Identification of a Functional <i>fur</i> Gene in <i>Bradyrhizobium japonicum</i> . Journal of Bacteriology, 1999, 181, 5843-5846.	2.2	48
27	Heme transport and erythropoiesis. Current Opinion in Chemical Biology, 2013, 17, 204-211.	6.1	46
28	One ring to bring them all and in the darkness bind them: The trafficking of heme without deliverers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118881.	4.1	46
29	Iron Regulation through the Back Door: Iron-Dependent Metabolite Levels Contribute to Transcriptional Adaptation to Iron Deprivation in Saccharomyces cerevisiae. Eukaryotic Cell, 2010, 9, 460-471.	3.4	42
30	Hemozoin produced by mammals confers heme tolerance. ELife, 2019, 8, .	6.0	38
31	Heme Utilization in the Caenorhabditis elegans Hypodermal Cells Is Facilitated by Heme-responsive Gene-2. Journal of Biological Chemistry, 2012, 287, 9601-9612.	3.4	37
32	Lessons from bloodless worms: heme homeostasis in C. elegans. BioMetals, 2015, 28, 481-489.	4.1	36
33	Dietary Iron Content Mediates Hookworm Pathogenesis In Vivo. Infection and Immunity, 2006, 74, 289-295.	2.2	34
34	Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption. PLoS ONE, 2017, 12, e0181117.	2.5	34
35	ToxoplasmaÂgondii requires its plant-like heme biosynthesis pathway for infection. PLoS Pathogens, 2020, 16, e1008499.	4.7	33
36	Genome-Wide Analysis Reveals Novel Genes Essential for Heme Homeostasis in Caenorhabditis elegans. PLoS Genetics, 2010, 6, e1001044.	3.5	32

Iqbal Hamza

#	Article	IF	CITATIONS
37	Label-Free Imaging of Heme Dynamics in Living Organisms by Transient Absorption Microscopy. Analytical Chemistry, 2018, 90, 3395-3401.	6.5	31
38	Structural insights into heme binding to IL-36α proinflammatory cytokine. Scientific Reports, 2019, 9, 16893.	3.3	29
39	The Heme Transport Capacity of LHR1 Determines the Extent of Virulence in Leishmania amazonensis. PLoS Neglected Tropical Diseases, 2015, 9, e0003804.	3.0	27
40	Iron and Heme Metabolism at the Leishmania–Host Interface. Trends in Parasitology, 2020, 36, 279-289.	3.3	27
41	A Novel Heme-responsive Element Mediates Transcriptional Regulation in Caenorhabditis elegans. Journal of Biological Chemistry, 2010, 285, 39536-39543.	3.4	22
42	Inter-organ signalling by HRG-7 promotes systemic haem homeostasis. Nature Cell Biology, 2017, 19, 799-807.	10.3	21
43	Hrg1 promotes heme-iron recycling during hemolysis in the zebrafish kidney. PLoS Genetics, 2018, 14, e1007665.	3.5	21
44	Mitochondrial heme: an exit strategy at last. Journal of Clinical Investigation, 2012, 122, 4328-4330.	8.2	21
45	Heme acquisition in the parasitic filarial nematode <i>Brugia malayi</i> . FASEB Journal, 2016, 30, 3501-3514.	0.5	20
46	A MFS-like plasma membrane transporter required for Leishmania virulence protects the parasites from iron toxicity. PLoS Pathogens, 2018, 14, e1007140.	4.7	20
47	Culturing Caenorhabditis elegans in Axenic Liquid Media and Creation of Transgenic Worms by Microparticle Bombardment. Journal of Visualized Experiments, 2014, , e51796.	0.3	18
48	Zebrafish as a model system to delineate the role of heme and iron metabolism during erythropoiesis. Molecular Genetics and Metabolism, 2019, 128, 204-212.	1.1	18
49	Structure, Expression, and Chromosomal Localization of the Mouse Atox1 Gene. Genomics, 2000, 63, 294-297.	2.9	16
50	Heme oxygenase-2 (HO-2) binds and buffers labile ferric heme in human embryonic kidney cells. Journal of Biological Chemistry, 2022, 298, 101549.	3.4	10
51	MRP5 and MRP9 play a concerted role in male reproduction and mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
52	Histidine residues are important for preserving the structure and heme binding to the C. elegans HRG-3 heme-trafficking protein. Journal of Biological Inorganic Chemistry, 2015, 20, 1253-1261.	2.6	8
53	Normal Iron Homeostasis Requires the Transporter SLC48A1 for Efficient Heme-Iron Recycling in Mammals. Frontiers in Genome Editing, 2020, 2, 8.	5.2	3
54	Cys Links Heme: Stereo-orientation of Heme Transfer in Cytochrome c Biogenesis. Journal of Molecular Biology, 2018, 430, 1081-1083.	4.2	1

#	Article	IF	CITATIONS
55	Porphyrin and Heme Trafficking in Metazoans. Handbook of Porphyrin Science, 2013, , 223-265.	0.8	Ο
56	Hematology from the Ground Up: Lessons from C. elegans. Blood, 2013, 122, SCI-16-SCI-16.	1.4	0