Gregory B Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7202382/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High density molecular linkage maps of the tomato and potato genomes Genetics, 1992, 132, 1141-1160.	1.2	1,464
2	Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993, 262, 1432-1436.	6.0	1,412
3	UNDERSTANDING THEFUNCTIONS OFPLANTDISEASERESISTANCEPROTEINS. Annual Review of Plant Biology, 2003, 54, 23-61.	8.6	836
4	The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10181-10186.	3.3	785
5	iTAK: A Program for Genome-wide Prediction andÂClassification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. Molecular Plant, 2016, 9, 1667-1670.	3.9	735
6	Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant Journal, 2004, 39, 734-746.	2.8	646
7	Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science, 1996, 274, 2060-2063.	6.0	630
8	Bacterial Effectors Target the Common Signaling Partner BAK1 to Disrupt Multiple MAMP Receptor-Signaling Complexes and Impede Plant Immunity. Cell Host and Microbe, 2008, 4, 17-27.	5.1	498
9	Transcriptome and Selected Metabolite Analyses Reveal Multiple Points of Ethylene Control during Tomato Fruit Development. Plant Cell, 2005, 17, 2954-2965.	3.1	474
10	Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 2336-2340.	3.3	437
11	The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO Journal, 1997, 16, 3207-3218.	3.5	427
12	A Draft Genome Sequence of <i>Nicotiana benthamiana</i> to Enhance Molecular Plant-Microbe Biology Research. Molecular Plant-Microbe Interactions, 2012, 25, 1523-1530.	1.4	411
13	Chromosome landing: a paradigm for map-based gene cloning in plants with large genomes. Trends in Genetics, 1995, 11, 63-68.	2.9	403
14	Specific Bacterial Suppressors of MAMP Signaling Upstream of MAPKKK in Arabidopsis Innate Immunity. Cell, 2006, 125, 563-575.	13.5	386
15	The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell, 1995, 83, 925-935.	13.5	383
16	Tomato Transcription Factors Pti4, Pti5, and Pti6 Activate Defense Responses When Expressed in Arabidopsis. Plant Cell, 2002, 14, 817-831.	3.1	375
17	Bacterial elicitation and evasion of plant innate immunity. Nature Reviews Molecular Cell Biology, 2006, 7, 601-611.	16.1	370
18	Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO Journal, 2003, 22, 60-69.	3.5	368

#	Article	IF	CITATIONS
19	The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11640-11645.	3.3	343
20	Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant Journal, 2003, 36, 905-917.	2.8	310
21	A Bacterial Inhibitor of Host Programmed Cell Death Defenses Is an E3 Ubiquitin Ligase. Science, 2006, 311, 222-226.	6.0	310
22	MOLECULARBASIS OFPTO-MEDIATEDRESISTANCE TOBACTERIALSPECKDISEASE INTOMATO. Annual Review of Phytopathology, 2003, 41, 215-243.	3.5	303
23	MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease. EMBO Journal, 2004, 23, 3072-3082.	3.5	299
24	A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature, 2007, 448, 370-374.	13.7	284
25	Deductions about the Number, Organization, and Evolution of Genes in the Tomato Genome Based on Analysis of a Large Expressed Sequence Tag Collection and Selective Genomic Sequencing. Plant Cell, 2002, 14, 1441-1456.	3.1	283
26	Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2275-2280.	3.3	280
27	A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant Journal, 2007, 51, 32-46.	2.8	278
28	Pti4 Is Induced by Ethylene and Salicylic Acid, and Its Product Is Phosphorylated by the Pto Kinase. Plant Cell, 2000, 12, 771-785.	3.1	274
29	Deletions in the Repertoire of Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Genes Reveal Functional Overlap among Effectors. PLoS Pathogens, 2009, 5, e1000388.	2.1	269
30	Role of mitogen-activated protein kinases in plant immunity. Current Opinion in Plant Biology, 2005, 8, 541-547.	3.5	268
31	Two Distinct Pseudomonas Effector Proteins Interact with the Pto Kinase and Activate Plant Immunity. Cell, 2002, 109, 589-598.	13.5	260
32	The Tomato Transcription Factor Pti4 Regulates Defense-Related Gene Expression via GCC Box and Non-GCC Box cis Elements[W]. Plant Cell, 2003, 15, 3033-3050.	3.1	255
33	Overexpression of Pto Activates Defense Responses and Confers Broad Resistance. Plant Cell, 1999, 11, 15-29.	3.1	252
34	Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in <i>Pseudomonas syringae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2975-2980.	3.3	212
35	Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant Journal, 2004, 40, 47-59.	2.8	210
36	Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2851-2856.	3.3	206

#	Article	IF	CITATIONS
37	Strategies used by bacterial pathogens to suppress plant defenses. Current Opinion in Plant Biology, 2004, 7, 356-364.	3.5	205
38	A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death Plant Cell, 1994, 6, 1543-1552.	3.1	187
39	Methods to Study PAMP-Triggered Immunity Using Tomato and <i>Nicotiana benthamiana</i> . Molecular Plant-Microbe Interactions, 2010, 23, 991-999.	1.4	183
40	An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant Journal, 2007, 50, 14-28.	2.8	175
41	The Pseudomonas AvrPto Protein Is Differentially Recognized by Tomato and Tobacco and Is Localized to the Plant Plasma Membrane. Plant Cell, 2000, 12, 2323-2337.	3.1	163
42	<i>Xanthomonas</i> T3S Effector XopN Suppresses PAMP-Triggered Immunity and Interacts with a Tomato Atypical Receptor-Like Kinase and TFT1. Plant Cell, 2009, 21, 1305-1323.	3.1	162
43	Functional analysis of plant disease resistance genes and their downstream effectors. Current Opinion in Plant Biology, 1999, 2, 273-279.	3.5	157
44	Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nature Plants, 2016, 2, 16128.	4.7	151
45	The SGN VIGS Tool: User-Friendly Software to Design Virus-Induced Gene Silencing (VIGS) Constructs for Functional Genomics. Molecular Plant, 2015, 8, 486-488.	3.9	150
46	Gene Profiling of a Compatible Interaction Between Phytophthora infestans and Solanum tuberosum Suggests a Role for Carbonic Anhydrase. Molecular Plant-Microbe Interactions, 2005, 18, 913-922.	1.4	148
47	Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana. Plant Molecular Biology, 2007, 63, 273-287.	2.0	148
48	Comparative Genomics of Host-Specific Virulence in Pseudomonas syringae. Genetics, 2006, 174, 1041-1056.	1.2	139
49	Transcriptomics-based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall-associated kinase involved in plant immunity. Genome Biology, 2013, 14, R139.	13.9	137
50	A Draft Genome Sequence of <i>Pseudomonas syringae</i> pv. <i>tomato</i> T1 Reveals a Type III Effector Repertoire Significantly Divergent from That of <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000. Molecular Plant-Microbe Interactions, 2009, 22, 52-62.	1.4	134
51	Tomato 14-3-3 Protein 7 Positively Regulates Immunity-Associated Programmed Cell Death by Enhancing Protein Abundance and Signaling Ability of MAPKKK α Â. Plant Cell, 2010, 22, 260-272.	3.1	133
52	Innate immunity in plants. Current Opinion in Immunology, 2001, 13, 55-62.	2.4	129
53	Calmodulin-like Proteins from Arabidopsis and Tomato are Involved in Host Defense Against Pseudomonas syringae pv. tomato. Plant Molecular Biology, 2005, 58, 887-897.	2.0	129
54	Comprehensive transcript profiling of Pto- and Prf-mediated host defense responses to infection byPseudomonas syringaepv.tomato. Plant Journal, 2002, 32, 299-315.	2.8	128

#	Article	IF	CITATIONS
55	An avrPto/avrPtoB Mutant of Pseudomonas syringae pv. tomato DC3000 Does Not Elicit Pto-Mediated Resistance and Is Less Virulent on Tomato. Molecular Plant-Microbe Interactions, 2005, 18, 43-51.	1.4	128
56	Virus-induced Gene Silencing (VIGS) in Nicotiana benthamiana and Tomato. Journal of Visualized Experiments, 2009, , .	0.2	125
57	Construction of a yeast artificial chromosome library of tomato and identification of cloned segments linked to two disease resistance loci. Molecular Genetics and Genomics, 1992, 233, 25-32.	2.4	124
58	Expression of the Tomato Pto Gene in Tobacco Enhances Resistance to Pseudomonas syringae pv tabaci Expressing avrPto Plant Cell, 1995, 7, 1529-1536.	3.1	123
59	Allelic variation in two distinct <i>Pseudomonas syringae</i> flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytologist, 2013, 200, 847-860.	3.5	121
60	The Tomato Calcium Sensor Cbl10 and Its Interacting Protein Kinase Cipk6 Define a Signaling Pathway in Plant Immunity. Plant Cell, 2013, 25, 2748-2764.	3.1	121
61	Recognition Specificity for the Bacterial Avirulence Protein AvrPto Is Determined by Thr-204 in the Activation Loop of the Tomato Pto Kinase. Molecular Cell, 1998, 2, 241-245.	4.5	120
62	A tomato LysM receptorâ€like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. Plant Journal, 2012, 69, 92-103.	2.8	120
63	Silencing of subfamily I of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell death. Plant Journal, 2004, 38, 563-577.	2.8	119
64	AvrPto-dependent Pto-interacting proteins and AvrPto-interacting proteins in tomato. Proceedings of the United States of America, 2000, 97, 8836-8840.	3.3	117
65	Structural Analysis of Pseudomonas syringae AvrPtoB Bound to Host BAK1 Reveals Two Similar Kinase-Interacting Domains in a Type III Effector. Cell Host and Microbe, 2011, 10, 616-626.	5.1	117
66	A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death. Plant Journal, 2010, 62, 357-366.	2.8	112
67	Generation of a Collection of Mutant Tomato Lines Using Pooled CRISPR Libraries. Plant Physiology, 2017, 174, 2023-2037.	2.3	112
68	Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Polymutants Reveal an Interplay between HopAD1 and AvrPtoB. Cell Host and Microbe, 2015, 17, 752-762.	5.1	111
69	Effector-triggered immunity mediated by the Pto kinase. Trends in Plant Science, 2011, 16, 132-140.	4.3	107
70	Identification of MAPKs and Their Possible MAPK Kinase Activators Involved in the Pto-mediated Defense Response of Tomato. Journal of Biological Chemistry, 2004, 279, 49229-49235.	1.6	106
71	Whole-Genome Expression Profiling Defines the HrpL Regulon of Pseudomonas syringae pv. tomato DC3000, Allows de novo Reconstruction of the Hrp cis Element, and Identifies Novel Coregulated Genes. Molecular Plant-Microbe Interactions, 2006, 19, 1167-1179.	1.4	105
72	Pseudomonas syringae pv. tomato type III effectors AvrPto and AvrPtoB promote ethylene-dependent cell death in tomato. Plant Journal, 2005, 44, 139-154.	2.8	100

#	Article	IF	CITATIONS
73	Pre-germination genotypic screening using PCR amplification of half-seeds. Theoretical and Applied Genetics, 1993, 86, 694-698.	1.8	98
74	Thr38 and Ser198 are Pto autophosphorylation sites required for the AvrPto–Pto-mediated hypersensitive response. EMBO Journal, 2000, 19, 2257-2269.	3.5	95
75	Pseudomonas syringae pv tomato induces the expression of tomato EREBP-like genes Pti4 and Pti5 independent of ethylene, salicylate and jasmonate. Plant Journal, 1999, 20, 475-483.	2.8	94
76	The Pto Bacterial Resistance Gene and the Fen Insecticide Sensitivity Gene Encode Functional Protein Kinases with Serine/Threonine Specificity. Plant Physiology, 1995, 108, 1735-1739.	2.3	89
77	A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response. Molecular Plant Pathology, 2006, 7, 593-604.	2.0	88
78	Use of RNA-seq data to identify and validate RT-qPCR reference genes for studying the tomato-Pseudomonas pathosystem. Scientific Reports, 2017, 7, 44905.	1.6	85
79	Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nature Communications, 2020, 11, 5817.	5.8	85
80	The Pto kinase mediates a signaling pathway leading to the oxidative burst in tomato. Proceedings of the United States of America, 1996, 93, 13393-13397.	3.3	82
81	The Nâ€ŧerminal region of <i>Pseudomonas</i> type III effector AvrPtoB elicits Ptoâ€dependent immunity and has two distinct virulence determinants. Plant Journal, 2007, 52, 595-614.	2.8	81
82	Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death. EMBO Journal, 2006, 25, 255-265.	3.5	78
83	Identification and Characterization of Plant Genes Involved in Agrobacterium-Mediated Plant Transformation by Virus-Induced Gene Silencing. Molecular Plant-Microbe Interactions, 2007, 20, 41-52.	1.4	77
84	Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins. Genome Biology, 2014, 15, 492.	3.8	75
85	Alleles of Pto and Fen occur in bacterial speck-susceptible and fenthion-insensitive tomato cultivars and encode active protein kinases Plant Cell, 1997, 9, 61-73.	3.1	74
86	Crystal Structure of the Complex between <i>Pseudomonas</i> Effector AvrPtoB and the Tomato Pto Kinase Reveals Both a Shared and a Unique Interface Compared with AvrPto-Pto. Plant Cell, 2009, 21, 1846-1859.	3.1	74
87	High-Resolution Linkage Analysis and Physical Characterization of the <i>Pto</i> Bacterial Resistance Locus in Tomato. Molecular Plant-Microbe Interactions, 1993, 6, 26.	1.4	74
88	Chromosome 2-specific DNA clones from flow-sorted chromosomes of tomato. Molecular Genetics and Genomics, 1994, 242, 551-558.	2.4	73
89	Tomato 14-3-3 Protein TFT7 Interacts with a MAP Kinase Kinase to Regulate Immunity-associated Programmed Cell Death Mediated by Diverse Disease Resistance Proteins. Journal of Biological Chemistry, 2011, 286, 14129-14136.	1.6	73
90	Identification of <i>Nicotiana benthamiana</i> Genes Involved in Pathogen-Associated Molecular Pattern–Triggered Immunity. Molecular Plant-Microbe Interactions, 2010, 23, 715-726.	1.4	71

#	Article	IF	CITATIONS
91	Type III Secretion and Effectors Shape the Survival and Growth Pattern of <i>Pseudomonas syringae</i> on Leaf Surfaces Â. Plant Physiology, 2012, 158, 1803-1818.	2.3	70
92	Partial Resistance of Tomato to Phytophthora infestans Is Not Dependent upon Ethylene, Jasmonic Acid, or Salicylic Acid Signaling Pathways. Molecular Plant-Microbe Interactions, 2003, 16, 141-148.	1.4	68
93	Ancient origin of pathogen recognition specificity conferred by the tomato disease resistance gene Pto. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2059-2064.	3.3	64
94	Diverse AvrPtoB Homologs from Several Pseudomonas syringae Pathovars Elicit Pto-Dependent Resistance and Have Similar Virulence Activities. Applied and Environmental Microbiology, 2006, 72, 702-712.	1.4	64
95	Differential transcription of the two glutamine synthetase genes of Bradyrhizobium japonicum. Journal of Bacteriology, 1987, 169, 5861-5866.	1.0	63
96	Host-Mediated Phosphorylation of Type III Effector AvrPto Promotes Pseudomonas Virulence and Avirulence in Tomato. Plant Cell, 2006, 18, 502-514.	3.1	63
97	Pto- and Prf-Mediated Recognition of AvrPto and AvrPtoB Restricts the Ability of Diverse Pseudomonas syringae Pathovars to Infect Tomato. Molecular Plant-Microbe Interactions, 2007, 20, 806-815.	1.4	63
98	Role of the Bradyrhizobium japonicum ntrC gene product in differential regulation of the glutamine synthetase II gene (glnII). Journal of Bacteriology, 1988, 170, 5452-5459.	1.0	61
99	Bradyrhizobium japonicum glnB, a putative nitrogen-regulatory gene, is regulated by NtrC at tandem promoters. Journal of Bacteriology, 1989, 171, 5638-5645.	1.0	61
100	Rapid transcript accumulation of pathogenesis-related genes during an incompatible interaction in bacterial speck disease-resistant tomato plants. , 1999, 40, 455-465.		61
101	AvrPtoB: A bacterial type III effector that both elicits and suppresses programmed cell death associated with plant immunity. FEMS Microbiology Letters, 2005, 245, 1-8.	0.7	61
102	The Tomato Fni3 Lysine-63–Specific Ubiquitin-Conjugating Enzyme and Suv Ubiquitin E2 Variant Positively Regulate Plant Immunity. Plant Cell, 2013, 25, 3615-3631.	3.1	61
103	Overexpression of the Disease Resistance Gene Pto in Tomato Induces Gene Expression Changes Similar to Immune Responses in Human and Fruitfly Â. Plant Physiology, 2003, 132, 1901-1912.	2.3	57
104	<i><scp>S</scp>almonella</i> colonization activates the plant immune system and benefits from association with plant pathogenic bacteria. Environmental Microbiology, 2013, 15, 2418-2430.	1.8	57
105	Landraces ofPhaseolus vulgaris (Fabaceae) in Northern Malawi. I. Regional variation. Economic Botany, 1987, 41, 190-203.	0.8	55
106	Molecular genetic analysis of theripening-inhibitor andnon-ripening loci of tomato: A first step in genetic map-based cloning of fruit ripening genes. Molecular Genetics and Genomics, 1995, 248, 195-206.	2.4	55
107	Endosome-Associated CRT1 Functions Early in <i>Resistance</i> Gene–Mediated Defense Signaling in <i>Arabidopsis</i> and Tobacco. Plant Cell, 2010, 22, 918-936.	3.1	55
108	Pto Kinase Binds Two Domains of AvrPtoB and Its Proximity to the Effector E3 Ligase Determines if It Evades Degradation and Activates Plant Immunity. PLoS Pathogens, 2014, 10, e1004227.	2.1	55

#	Article	IF	CITATIONS
109	The disease-resistance gene Pto and the fenthion-sensitivity gene fen encode closely related functional protein kinases Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4181-4184.	3.3	53
110	Identification and Expression Profiling of Tomato Genes Differentially Regulated During a Resistance Response to Xanthomonas campestris pv. vesicatoria. Molecular Plant-Microbe Interactions, 2004, 17, 1212-1222.	1.4	53
111	A Subset of Ubiquitin-Conjugating Enzymes Is Essential for Plant Immunity. Plant Physiology, 2017, 173, 1371-1390.	2.3	53
112	Tomato Wall-Associated Kinase SlWak1 Depends on Fls2/Fls3 to Promote Apoplastic Immune Responses to <i>Pseudomonas syringae</i> . Plant Physiology, 2020, 183, 1869-1882.	2.3	52
113	Generation and Molecular Characterization of CRISPR/Cas9-Induced Mutations in 63 Immunity-Associated Genes in Tomato Reveals Specificity and a Range of Gene Modifications. Frontiers in Plant Science, 2020, 11, 10.	1.7	51
114	A Nitrilase-Like Protein Interacts with GCC Box DNA-Binding Proteins Involved in Ethylene and Defense Responses. Plant Physiology, 1998, 118, 867-874.	2.3	50
115	The Solution Structure of Type III Effector Protein AvrPto Reveals Conformational and Dynamic Features Important for Plant Pathogenesis. Structure, 2004, 12, 1257-1268.	1.6	50
116	High-resolution linkage analysis and physical characterization of the EIX-responding locus in tomato. Theoretical and Applied Genetics, 2000, 100, 184-189.	1.8	47
117	Natural Variation for Responsiveness to flg22, flgII-28, and csp22 and Pseudomonas syringae pv. tomato in Heirloom Tomatoes. PLoS ONE, 2014, 9, e106119.	1.1	46
118	Landraces of Phaseolus vulgaris (Fabaceae) in Northern Malawi. II. Generation and maintenance of variability. Economic Botany, 1987, 41, 204-215.	0.8	39
119	Biochemical Properties of Two Protein Kinases Involved in Disease Resistance Signaling in Tomato. Journal of Biological Chemistry, 1998, 273, 15860-15865.	1.6	38
120	The Myristylation Motif of Pto Is Not Required for Disease Resistance. Molecular Plant-Microbe Interactions, 1998, 11, 572-576.	1.4	38
121	Location and activity of members of a family ofvirPphAhomologues in pathovars ofPseudomonas syringaeandP. savastanoi. Molecular Plant Pathology, 2002, 3, 205-216.	2.0	38
122	The major site of the Pti1 kinase phosphorylated by the Pto kinase is located in the activation domain and is required for Pto-Pti1 physical interaction. FEBS Journal, 2000, 267, 171-178.	0.2	37
123	The <i>Ptr1</i> Locus of <i>Solanum lycopersicoides</i> Confers Resistance to Race 1 Strains of <i>Pseudomonas syringae</i> pv. <i>tomato</i> and to <i>Ralstonia pseudosolanacearum</i> by Recognizing the Type III Effectors AvrRpt2 and RipBN. Molecular Plant-Microbe Interactions, 2019, 32, 949-960.	1.4	37
124	A Member of the Tomato Pto Gene Family Confers Sensitivity to Fenthion Resulting in Rapid Cell Death. Plant Cell, 1994, 6, 1543.	3.1	35
125	Pseudomonas syringae Type III Effector AvrPtoB Is Phosphorylated in Plant Cells on Serine 258, Promoting Its Virulence Activity. Journal of Biological Chemistry, 2007, 282, 30737-30744.	1.6	35
126	The β-Subunit of the SnRK1 Complex Is Phosphorylated by the Plant Cell Death Suppressor Adi3 Â. Plant Physiology, 2012, 159, 1277-1290.	2.3	35

#	Article	IF	CITATIONS
127	Transcriptome-based identification and validation of reference genes for plant-bacteria interaction studies using Nicotiana benthamiana. Scientific Reports, 2019, 9, 1632.	1.6	34
128	DspA/E, a type III effector of Erwinia amylovora, is required for early rapid growth in Nicotiana benthamiana and causes NbSGT1-dependent cell death. Molecular Plant Pathology, 2007, 8, 255-265.	2.0	33
129	Map-based cloning in crop plants: tomato as a model system II. Isolation and characterization of a set of overlapping yeast artificial chromosomes encompassing the jointless locus. Molecular Genetics and Genomics, 1994, 244, 613-621.	2.4	32
130	Phosphorylation of the <i>Pseudomonas syringae</i> effector AvrPto is required for FLS2/BAK1-independent virulence activity and recognition by tobacco. Plant Journal, 2010, 61, 16-24.	2.8	32
131	The T-loop Extension of the Tomato Protein Kinase AvrPto-dependent Pto-interacting Protein 3 (Adi3) Directs Nuclear Localization for Suppression of Plant Cell Death. Journal of Biological Chemistry, 2010, 285, 17584-17594.	1.6	32
132	Signal recognition and transduction mediated by the tomato Pto kinase: a paradigm of innate immunity in plants. Microbes and Infection, 2000, 2, 1591-1597.	1.0	31
133	High-throughput CRISPR Vector Construction and Characterization of DNA Modifications by Generation of Tomato Hairy Roots. Journal of Visualized Experiments, 2016, , .	0.2	31
134	<i>Ptr1</i> evolved convergently with <i>RPS2</i> and <i>Mr5</i> to mediate recognition of AvrRpt2 in diverse solanaceous species. Plant Journal, 2020, 103, 1433-1445.	2.8	31
135	Spelling Changes and Fluorescent Tagging With Prime Editing Vectors for Plants. Frontiers in Genome Editing, 2021, 3, 617553.	2.7	30
136	Natural variation for unusual host responses and flagellinâ€mediated immunity against <i>Pseudomonas syringae</i> in genetically diverse tomato accessions. New Phytologist, 2019, 223, 447-461.	3.5	29
137	Analysis of wild-species introgressions in tomato inbreds uncovers ancestral origins. BMC Plant Biology, 2014, 14, 287.	1.6	27
138	Expression of the Tomato Pto Gene in Tobacco Enhances Resistance to Pseudomonas syringae pv tabaci Expressing avrPto. Plant Cell, 1995, 7, 1529.	3.1	23
139	Comparative genomics and phylogenetic discordance of cultivated tomato and close wild relatives. PeerJ, 2015, 3, e793.	0.9	23
140	The Tomato Kinase Pti1 Contributes to Production of Reactive Oxygen Species in Response to Two Flagellin-Derived Peptides and Promotes Resistance to <i>Pseudomonas syringae</i> Infection. Molecular Plant-Microbe Interactions, 2017, 30, 725-738.	1.4	22
141	Arabidopsis genome sequence as a tool for functional genomics in tomato. Genome Biology, 2001, 2, reviews1003.1.	13.9	21
142	Plant Programmed Cell Death Caused by an Autoactive Form of Prf Is Suppressed by Co-Expression of the Prf LRR Domain. Molecular Plant, 2012, 5, 1058-1067.	3.9	21
143	Detecting N-myristoylation and S-acylation of host and pathogen proteins in plants using click chemistry. Plant Methods, 2016, 12, 38.	1.9	21
144	Advances in experimental methods for the elucidation of <i>Pseudomonas syringae</i> effector function with a focus on AvrPtoB. Molecular Plant Pathology, 2009, 10, 777-793.	2.0	20

#	Article	IF	CITATIONS
145	Two virulence determinants of type III effector AvrPto are functionally conserved in diverse <i>Pseudomonas syringae</i> pathovars. New Phytologist, 2010, 187, 969-982.	3.5	20
146	Greasy tactics in the plant-pathogen molecular arms race. Journal of Experimental Botany, 2015, 66, 1607-1616.	2.4	20
147	Plant Genome Editing Database (PGED): A Call for Submission of Information about Genome-Edited Plant Mutants. Molecular Plant, 2019, 12, 127-129.	3.9	20
148	Molecular Characterization of Differences between the Tomato Immune Receptors Flagellin Sensing 3 and Flagellin Sensing 2. Plant Physiology, 2020, 183, 1825-1837.	2.3	20
149	Gene discovery for crop improvement. Current Opinion in Biotechnology, 1998, 9, 220-226.	3.3	19
150	Protein kinases in the plant defense response. Advances in Botanical Research, 2000, 32, 379-404.	0.5	19
151	Functional genomics of tomato for the study of plant immunity: Table 1. Briefings in Functional Genomics, 2015, 14, 291-301.	1.3	19
152	WRKY22 and WRKY25 transcription factors are positive regulators of defense responses in Nicotiana benthamiana. Plant Molecular Biology, 2021, 105, 65-82.	2.0	19
153	Acquisition of Iron Is Required for Growth of Salmonella spp. in Tomato Fruit. Applied and Environmental Microbiology, 2015, 81, 3663-3670.	1.4	18
154	Five <i>Xanthomonas</i> type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. Plant Signaling and Behavior, 2015, 10, e1064573.	1.2	18
155	Mai1 Protein Acts Between Host Recognition of Pathogen Effectors and Mitogen-Activated Protein Kinase Signaling. Molecular Plant-Microbe Interactions, 2019, 32, 1496-1507.	1.4	18
156	Molecular mechanisms involved in bacterial speck disease resistance of tomato. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1455-1461.	1.8	17
157	Overexpression of Pto Activates Defense Responses and Confers Broad Resistance. Plant Cell, 1999, 11, 15.	3.1	17
158	Suppression of pathogen-inducible NO synthase (iNOS) activity in tomato increases susceptibility to Pseudomonas syringae. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8239-8244.	3.3	17
159	Molecular Mechanisms Involved in Bacterial Speck Disease Resistance of Tomato. Plant Pathology Journal, 2004, 20, 7-12.	0.7	17
160	Alleles of Pto and Fen Occur in Bacterial Speck-Susceptible and Fenthion-Insensitive Tomato Cultivars and Encode Active Protein Kinases. Plant Cell, 1997, 9, 61.	3.1	16
161	A <i>Solanum lycopersicoides</i> reference genome facilitates insights into tomato specialized metabolism and immunity. Plant Journal, 2022, 110, 1791-1810.	2.8	16
162	PeerGAD: a peer-review-based and community-centric web application for viewing and annotating prokaryotic genome sequences. Nucleic Acids Research, 2004, 32, 3124-3135.	6.5	15

#	Article	IF	CITATIONS
163	Virusâ€induced gene silencing database for phenomics and functional genomics in <i>Nicotiana benthamiana</i> . Plant Direct, 2018, 2, e00055.	0.8	15
164	Manipulation of Plant Programmed Cell Death Pathways During Plant-Pathogen Interactions. Plant Signaling and Behavior, 2007, 2, 188-190.	1.2	13
165	The Bacterial Effector AvrPto Targets the Regulatory Coreceptor SOBIR1 and Suppresses Defense Signaling Mediated by the Receptor-Like Protein Cf-4. Molecular Plant-Microbe Interactions, 2018, 31, 75-85.	1.4	13
166	PP2C phosphatase Pic1 negatively regulates the phosphorylation status of Pti1b kinase, a regulator of flagellin-triggered immunity in tomato. Biochemical Journal, 2019, 476, 1621-1635.	1.7	13
167	Strategies used by bacterial pathogens to suppress plant defenses. Current Opinion in Plant Biology, 2004, 7, 356-356.	3.5	12
168	Two leucines in the Nâ€ŧerminal MAPKâ€docking site of tomato SlMKK2 are critical for interaction with a downstream MAPK to elicit programmed cell death associated with plant immunity. FEBS Letters, 2013, 587, 1460-1465.	1.3	12
169	Nonhost Resistance of Tomato to the Bean Pathogen <i>Pseudomonas syringae</i> pv. <i>syringae</i> B728a Is Due to a Defective E3 Ubiquitin Ligase Domain in AvrPtoB _{B728a} . Molecular Plant-Microbe Interactions, 2013, 26, 387-397.	1.4	12
170	Identification of a Candidate Gene in <i>Solanum habrochaites</i> for Resistance to a Race 1 Strain of <i>Pseudomonas syringae</i> pv. <i>tomato</i> . Plant Genome, 2015, 8, eplantgenome2015.02.0006.	1.6	12
171	Natural Variation in Tomato Reveals Differences in the Recognition of AvrPto and AvrPtoB Effectors from Pseudomonas syringae. Molecular Plant, 2016, 9, 639-649.	3.9	12
172	Integrative Proteomic and Phosphoproteomic Analyses of Pattern- and Effector-Triggered Immunity in Tomato. Frontiers in Plant Science, 2021, 12, 768693.	1.7	11
173	Assay for Pathogen-Associated Molecular Pattern (PAMP)-Triggered Immunity (PTI) in Plants. Journal of Visualized Experiments, 2009, , .	0.2	10
174	Complete Genome Sequence of a Tomato-Infecting Tomato Mottle Mosaic Virus in New York. Genome Announcements, 2015, 3, .	0.8	10
175	A novel method of transcriptome interpretation reveals a quantitative suppressive effect on tomato immune signaling by two domains in a single pathogen effector protein. BMC Genomics, 2016, 17, 229.	1.2	9
176	Pseudomonas syringae pv. tomato Strains from New York Exhibit Virulence Attributes Intermediate Between Typical Race 0 and Race 1 Strains. Plant Disease, 2017, 101, 1442-1448.	0.7	9
177	Pti4 Is Induced by Ethylene and Salicylic Acid, and Its Product Is Phosphorylated by the Pto Kinase. Plant Cell, 2000, 12, 771.	3.1	8
178	Loss of function of the bHLH transcription factor Nrd1 in tomato enhances resistance to <i>Pseudomonas syringae</i> . Plant Physiology, 2022, 190, 1334-1348.	2.3	7
179	Molecular Cloning of Plant Disease Resistance Genes. , 1996, , 1-32.		6
180	Bradyrhizobium japonicum ntrBC/glnAandnifA/glnAMutants: Further Evidence that Separate Regulatory Pathways GoverngInllExpression in Free-Living and Symbiotic Cells. Molecular Plant-Microbe Interactions, 1991, 4, 254.	1.4	5

#	ARTICLE	IF	CITATIONS
181	Analysis of the molecular basis of Pseudomonas syringae pv. tomato resistance in tomato. Euphytica, 1994, 79, 187-193.	0.6	4
182	Thymoquinone causes multiple effects, including cell death, on dividing plant cells. Comptes Rendus - Biologies, 2013, 336, 546-556.	0.1	4
183	The tomato <i>Pto</i> gene confers resistance to <i>Pseudomonas floridensis</i> , an emergent plant pathogen with just nine type <scp>III</scp> effectors. Plant Pathology, 2019, 68, 977-984.	1.2	4
184	1H, 15N and 13C chemical shift assignments of the structured core of the pseudomonas effector protein AvrPto. Journal of Biomolecular NMR, 2002, 23, 247-248.	1.6	3
185	Ser360 and Ser364 in the Kinase Domain of Tomato SIMAPKKKα are Critical for Programmed Cell Death Associated with Plant Immunity. Plant Pathology Journal, 2017, 33, 163-169.	0.7	3
186	Detecting the Interaction of Peptide Ligands with Plant Membrane Receptors. Current Protocols in Plant Biology, 2017, 2, 240-269.	2.8	2
187	The Pseudomonas AvrPto Protein Is Differentially Recognized by Tomato and Tobacco and Is Localized to the Plant Plasma Membrane. Plant Cell, 2000, 12, 2323.	3.1	1
188	Construction of plant yeast artificial chromosome libraries. , 1994, , 383-399.		0
189	Biochemical characterization of the Pto protein kinase conferring speck disease resistance in tomato. Current Plant Science and Biotechnology in Agriculture, 1999, , 541-544.	0.0	0