Armand Djoro Anoman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7201745/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphoglycerate dehydrogenase genes differentially affect Arabidopsis metabolism and development. Plant Science, 2021, 306, 110863.	3.6	10
2	The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism. Plant Physiology, 2021, 186, 1487-1506.	4.8	20
3	PGDH family genes differentially affect Arabidopsis tolerance to salt stress. Plant Science, 2020, 290, 110284.	3.6	12
4	Deficiency in the Phosphorylated Pathway of Serine Biosynthesis Perturbs Sulfur Assimilation. Plant Physiology, 2019, 180, 153-170.	4.8	19
5	Phosphoglycerate Kinases Are Co-Regulated to Adjust Metabolism and to Optimize Growth. Plant Physiology, 2018, 176, 1182-1198.	4.8	62
6	Overexpression of the triose phosphate translocator (<scp>TPT</scp>) complements the abnormal metabolism and development of plastidial glycolytic glyceraldehydeâ€3â€phosphate dehydrogenase mutants. Plant Journal, 2017, 89, 1146-1158.	5.7	20
7	Studying the Function of the Phosphorylated Pathway of Serine Biosynthesis in Arabidopsis thaliana. Methods in Molecular Biology, 2017, 1653, 227-242.	0.9	10
8	The specific role of plastidial glycolysis in photosynthetic and heterotrophic cells under scrutiny through the study of glyceraldehyde-3-phosphate dehydrogenase. Plant Signaling and Behavior, 2016, 11, e1128614.	2.4	19
9	Plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase is an important determinant in the carbon and nitrogen metabolism of heterotrophic cells in Arabidopsis. Plant Physiology, 2015, 169, pp.00696.2015.	4.8	27
10	Lack of phosphoserine phosphatase activity alters pollen and tapetum development in Arabidopsis thaliana. Plant Science, 2015, 235, 81-88.	3.6	11
11	Functional Characterization of the Plastidial 3-Phosphoglycerate Dehydrogenase Family in Arabidopsis. Plant Physiology, 2013, 163, 1164-1178.	4.8	70
12	The Phosphorylated Pathway of Serine Biosynthesis Is Essential Both for Male Gametophyte and Embryo Development and for Root Growth in Arabidopsis. Plant Cell, 2013, 25, 2084-2101.	6.6	80
13	Serine biosynthesis by photorespiratory and nonâ€photorespiratory pathways: an interesting interplay with unknown regulatory networks. Plant Biology, 2013, 15, 707-712.	3.8	41
14	Identification of the phosphoglycerate dehydrogenase isoform EDA9 as the essential gene for embryo and male gametophyte development in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2013, 8, e27207.	2.4	8
15	The essential role of the phosphorylated pathway of serine biosynthesis in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2013, 8, e27104.	2.4	13
16	Interactions between abscisic acid and plastidial glycolysis in Arabidopsis. Plant Signaling and Behavior, 2011, 6, 157-159.	2.4	9