
Laurent Fontaine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7201707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of a dual UCST-type thermosensitive and acid-degradable nanogel based on poly(N-acryloyl) Tj ETQq1	1 0,78431 2.6	4 rgBT /Over
2	Polyvalent Transition‧tate Analogues of Sialyl Substrates Strongly Inhibit Bacterial Sialidases**. Chemistry - A European Journal, 2021, 27, 3142-3150.	1.7	8
3	ROMP of novel hindered phenol-functionalized norbornenes and preliminary evaluation as stabilizing agentsâ€. Polymer Degradation and Stability, 2021, 186, 109522.	2.7	5
4	Toward recycling ʺunsortableʺ post-consumer WEEE stream: Characterization and impact of electron beam irradiation on mechanical properties. Journal of Cleaner Production, 2021, 294, 126300.	4.6	7
5	Enhanced thermo-oxidative stability of polydicyclopentadiene containing covalently bound nitroxide groups. Polymer Degradation and Stability, 2021, 195, 109765.	2.7	0
6	Polynorborneneâ€ <i>g</i> â€poly(ethylene oxide) Through the Combination of ROMP and Nitroxide Radical Coupling Reactions. Journal of Polymer Science, 2020, 58, 645-653.	2.0	3
7	Blue LED light-activated RAFT polymerization of PEG acrylate with high chain-end fidelity for efficient PEGylation. Polymer Chemistry, 2020, 11, 5238-5248.	1.9	10
8	Poly(2-isopropenyl-2-oxazoline) – a structural analogue to poly(vinyl azlactone) with Orthogonal Reactivity. Polymer Chemistry, 2020, 11, 5681-5692.	1.9	14
9	Poly(norbornenyl azlactone) as a versatile platform for sequential double click postpolymerization modification. European Polymer Journal, 2020, 141, 110081.	2.6	4
10	Radical ring-opening polymerization of novel azlactone-functionalized vinyl cyclopropanes. Polymer Chemistry, 2020, 11, 4013-4021.	1.9	3
11	Hydrogenâ€Bonding UCSTâ€Thermosensitive Nanogels by Direct Photoâ€RAFT Polymerizationâ€Induced Selfâ€Assembly in Aqueous Dispersion. Macromolecular Rapid Communications, 2020, 41, e2000203.	2.0	21
12	Heteromultifunctional Oxazolones as Versatile Linkers for Click Chemistry Reactions. European Journal of Organic Chemistry, 2019, 2019, 7359-7366.	1.2	5
13	Structure-pDNA complexation and structure–cytotoxicity relationships of PEGylated, cationic aminoethyl-based polyacrylates with tunable topologies. Polymer Chemistry, 2019, 10, 1968-1977.	1.9	6
14	An optimised Cu(0)-RDRP approach for the synthesis of lipidated oligomeric vinyl azlactone: toward a versatile antimicrobial materials screening platform. Journal of Materials Chemistry B, 2019, 7, 6796-6809.	2.9	11
15	Nitroxide radical-containing polynorbornenes by ring-opening metathesis polymerization as stabilizing agents for polyolefins. Polymer Chemistry, 2019, 10, 5487-5497.	1.9	9
16	The effect of metal ions on the viscoelastic properties of thermosensitive sol-to-gel reversible metallo-supramolecular hydrogels. Polymer Chemistry, 2018, 9, 2494-2504.	1.9	2
17	Synthesis of Amphiphilic Block Copolymers Based on SKA by RAFT Polymerization. Macromolecular Chemistry and Physics, 2018, 219, 1700506.	1.1	3
18	Mechanical recycling: Compatibilization of mixed thermoplastic wastes. Polymer Degradation and Stability, 2018, 147, 245-266.	2.7	206

#	Article	IF	CITATIONS
19	Sono-RAFT Polymerization-Induced Self-Assembly in Aqueous Dispersion: Synthesis of LCST-type Thermosensitive Nanogels. Macromolecules, 2018, 51, 8862-8869.	2.2	53
20	Azlactone-based heterobifunctional linkers with orthogonal clickable groups: efficient tools for bioconjugation with complete atom economy. Organic and Biomolecular Chemistry, 2018, 16, 7124-7128.	1.5	20
21	Thermoresponsive hybrid double-crosslinked networks using magnetic iron oxide nanoparticles as crossing points. Polymer Chemistry, 2018, 9, 4642-4650.	1.9	9
22	Poly(1,4-butadiene)-graft-poly(L-lactide) via the grafting-from strategy. Polymer Bulletin, 2017, 74, 4415-4422.	1.7	4
23	Tuning the Molar Composition of "Chargeâ€Shifting―Cationic Copolymers Based on 2â€{ <i>N,N</i> â€Dimethylamino)Ethyl Acrylate and 2â€{ <i>tert</i> â€Bocâ€Amino)Ethyl Acrylate. Macromolecula Rapid Communications, 2017, 38, 1600641.	ir2.0	10
24	Norborneneâ€functionalized PEOâ€ <i>b</i> â€PCL: A versatile platform for miktoâ€arm star, umbrellaâ€like, and combâ€like graft copolymers. Journal of Polymer Science Part A, 2017, 55, 4051-4061.	2.5	10
25	Alkyl phosphonic acid-based ligands as tools for converting hydrophobic iron nanoparticles into water soluble iron–iron oxide core–shell nanoparticles. New Journal of Chemistry, 2017, 41, 11898-11905.	1.4	15
26	Heterofunctional RAFTâ€derived PNIPAM via cascade trithiocarbonate removal and thiolâ€yne coupling click reaction. Journal of Polymer Science Part A, 2017, 55, 3597-3606.	2.5	7
27	A straightforward synthesis of wellâ€defined difluorophosphonylated terminated poly(εâ€caprolactone) for grafting onto iron oxide magnetic nanoparticles. Journal of Polymer Science Part A, 2016, 54, 2453-2458.	2.5	1
28	Sol–gel reversible metallo-supramolecular hydrogels based on a thermoresponsive double hydrophilic block copolymer. Polymer Chemistry, 2016, 7, 6834-6842.	1.9	21
29	Recyclable magnetic nanocluster crosslinked with poly(ethylene oxide)- block -poly(2-vinyl-4,4-dimethylazlactone) copolymer for adsorption with antibody. Materials Science and Engineering C, 2016, 67, 285-293.	3.8	8
30	High Molar Mass Poly(1,4-butadiene)- <i>graft</i> -poly(Îμ-caprolactone) Copolymers by ROMP: Synthesis via the Grafting-From Route and Self-Assembling Properties. Macromolecules, 2016, 49, 4739-4745.	2.2	13
31	Synthesis and characterization of high grafting density bottle-brush poly(oxa)norbornene-g-poly(Îμ-caprolactone). Polymer Chemistry, 2016, 7, 1730-1738.	1.9	21
32	Modelling irradiation by EM waves of multifunctionalized iron oxide nanoparticles and subsequent drug release. Journal of Physics: Conference Series, 2015, 633, 012003.	0.3	0
33	1,4-Polybutadienes with Pendant Hydroxyl Functionalities by ROMP: Synthetic and Mechanistic Insights. Macromolecules, 2015, 48, 3843-3852.	2.2	16
34	Synthesis and characterization of innovative well-defined difluorophosphonylated-(co)polymers by RAFT polymerization. Polymer Chemistry, 2015, 6, 4597-4604.	1.9	11
35	Phosphonated furan-functionalized poly(ethylene oxide)s using orthogonal click chemistries: synthesis and Diels–Alder reactivity. Polymer Chemistry, 2015, 6, 3024-3030.	1.9	4
36	One-Step Synthesis of Azlactone-Functionalized SG1-Based Alkoxyamine for Nitroxide-Mediated Polymerization and Bioconjugation. Macromolecules, 2015, 48, 2087-2097.	2.2	16

#	Article	IF	CITATIONS
37	Innovative well-defined primary amine-based polyacrylates for plasmid DNA complexation. Polymer Chemistry, 2014, 5, 5542.	1.9	10
38	Synthesis and polymerization of cyclobutenyl-functionalized polylactide and polycaprolactone: a consecutive ROP/ROMP route towards poly(1,4-butadiene)-g-polyesters. Polymer Chemistry, 2014, 5, 3476.	1.9	25
39	Functional Iron Oxide Magnetic Nanoparticles with Hyperthermiaâ€Induced Drug Release Ability by Using a Combination of Orthogonal Click Reactions. Angewandte Chemie - International Edition, 2013, 52, 14152-14156.	7.2	133
40	Synthesis of 1,4-polybutadiene-g-poly(ethylene oxide) via the macromonomer approach by ROMP. Polymer Chemistry, 2013, 4, 2168.	1.9	19
41	Synthesis of ï‰â€phosphonated poly(ethylene oxide)s through the combination of kabachnik–fields reaction and "click―chemistry. Journal of Polymer Science Part A, 2013, 51, 415-423.	2.5	10
42	Synthesis and characterization of a novel nonlinear optical hyperbranched polymer containing a highly performing chromophore. Polymers for Advanced Technologies, 2013, 24, 473-477.	1.6	6
43	Thermoresponsive block copolymers containing reactive azlactone groups and their bioconjugation with lysozyme. Polymer Chemistry, 2013, 4, 675-685.	1.9	39
44	Cyclobutenyl macromonomers: Synthetic strategies and ring-opening metathesis polymerization. European Polymer Journal, 2013, 49, 972-983.	2.6	27
45	Introducing the Azlactone Functionality into Polymers through Controlled Radical Polymerization: Strategies and Recent Developments. Australian Journal of Chemistry, 2012, 65, 970.	0.5	50
46	An Orthogonal Modular Approach to Macromonomers Using Clickable Cyclobutenyl Derivatives and RAFT Polymerization. Macromolecules, 2012, 45, 7758-7769.	2.2	15
47	New Cross-Linkable Polymers with Huisgen Reaction Incorporating High μÂî² Chromophores for Second-Order Nonlinear Optical Applications. Chemistry of Materials, 2012, 24, 1143-1157.	3.2	41
48	Phosphites as alternative coreagents for the oneâ€pot aminolysis/thiolâ€ene synthesis of maleimideâ€functionalized RAFT polymers. Journal of Polymer Science Part A, 2012, 50, 1657-1661.	2.5	16
49	Amineâ€Reactive Polymers Synthesized by RAFT Polymerization Using an Azlactone Functional Trithiocarbonate RAFT Agent. Macromolecular Rapid Communications, 2012, 33, 1753-1758.	2.0	23
50	Synthesis and second-order nonlinear optical properties of a crosslinkable functionalized hyperbranched polymer. European Polymer Journal, 2012, 48, 116-126.	2.6	18
51	Azlactone functionalization of magnetic nanoparticles using ATRP and their bioconjugation. Polymer, 2012, 53, 113-120.	1.8	30
52	One-Pot Synthesis of Natural Rubber-Based Telechelic <i>cis</i> -1,4-Polyisoprenes and Their Use To Prepare Block Copolymers by RAFT Polymerization. Macromolecules, 2011, 44, 784-794.	2.2	30
53	Preparation of a New Electro-optic Polymer Cross-Linkable via Copper-Free Thermal Huisgen Cyclo-Addition and Fabrication of Optical Waveguides by Reactive Ion Etching. ACS Applied Materials & Interfaces, 2011, 3, 2092-2098.	4.0	8
54	Stable azlactone-functionalized nanoparticles prepared from thermoresponsive copolymers synthesized by RAFT polymerization. Polymer Chemistry, 2011, 2, 2878.	1.9	48

#	Article	IF	CITATIONS
55	Synthesis of thermoresponsive oxazolone end-functional polymers for reactions with amines using thiol-Michael addition "click―chemistry. Polymer Chemistry, 2011, 2, 1258.	1.9	29
56	Scope and limitation of the copper free thermal Huisgen cross-linking reaction to stabilize the chromophores orientation in electro-optic polymers. Polymer Chemistry, 2011, 2, 157-167.	1.9	20
57	Core Cross-Linking of Dynamic Diblock Copolymer Micelles: Quantitative Study of Photopolymerization Efficiency and Micelle Structure Macromolecules, 2011, 44, 594-603.	2.2	43
58	Synthesis of poly(oxyethylene phosphate)â€ <i>g</i> â€poly(ethylene oxide) via the "grafting onto― approach by "click―chemistry. Journal of Polymer Science Part A, 2011, 49, 5124-5128.	2.5	9
59	Ringâ€opening bulk polymerization of five―and sixâ€membered cyclic phosphonates using maghnite, a nontoxic proton exchanged montmorillonite clay. Journal of Applied Polymer Science, 2011, 122, 891-897.	1.3	13
60	Synthesis of natural rubber-based telechelic cis-1,4-polyisoprenes and their use to prepare block copolymers via RAFT polymerization. European Polymer Journal, 2011, 47, 1151-1159.	2.6	11
61	Simpler and more efficient strategy to stabilize the chromophore orientation in electro-optic polymers with copper-free thermal Huisgen reaction. Polymer, 2011, 52, 2286-2294.	1.8	13
62	Synthesis and characterization of functionalized poly(\hat{I}^3 -benzyl-l-glutamate) derivates and corresponding nanoparticles preparation and characterization. International Journal of Pharmaceutics, 2010, 387, 244-252.	2.6	23
63	Solid-phase de novo synthesis of a (±)-2-deoxy-glycoside. Carbohydrate Research, 2010, 345, 844-849.	1.1	8
64	A new strategy for the synthesis of methacrylate endâ€functionalized macromonomers by ATRP. Journal of Polymer Science Part A, 2010, 48, 1526-1537.	2.5	14
65	Block copolymers based on 2â€vinylâ€4,4â€dimethylâ€5â€oxazolone by RAFT polymerization: Experimental and computational studies. Journal of Polymer Science Part A, 2010, 48, 5053-5062.	2.5	26
66	Synthesis of Well-Defined ω-Oxanorbornenyl Poly(ethylene oxide) Macromonomers via Click Chemistry and Their Ring-Opening Metathesis Polymerization. Macromolecules, 2010, 43, 5611-5617.	2.2	72
67	Synthesis of 3,6-Divinyl-1,2,4,5-Tetrazine, the First Member of the Elusive Vinyltetrazine Family. Synlett, 2009, 2009, 731-734.	1.0	5
68	Free radical copolymerization of αâ€fluoroacrylates for optical materials: Synthesis and characterization. Journal of Polymer Science Part A, 2009, 47, 1403-1411.	2.5	17
69	Postfunctionalization of poly(propargyl methacrylate) using copper catalyzed 1,3â€dipolar Huisgen cycloaddition: An easy route to electroâ€optic materials. Journal of Polymer Science Part A, 2009, 47, 5652-5660.	2.5	23
70	Synthesis and characterization of poly(fluorinated vinyl etherâ€ <i>altâ€ŧert</i> â€butyl) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5	50 142 Td (Î:
71	ATRP and ROMP: Modular chemical tools for advanced macromolecular engineering. Materials Science and Engineering C, 2009, 29, 367-371.	3.8	17

#	Article	IF	CITATIONS
73	Synthesis of Brush Copolymers Based on a Poly(1,4-butadiene) Backbone via the "Grafting From― Approach by ROMP and ATRP. Macromolecules, 2009, 42, 6927-6931.	2.2	44
74	Synthesis and Nonlinear Optical Properties of a Peripherally Functionalized Hyperbranched Polymer by DR1 Chromophores. ACS Applied Materials & Interfaces, 2009, 1, 1799-1806.	4.0	42
75	A new crosslinkable system based on thermal Huisgen reaction to enhance the stability of electro-optic polymers. Chemical Communications, 2009, , 1825.	2.2	34
76	New functionalized polyHIPE materials used as amine scavengers in batch and flow-through processes. Reactive and Functional Polymers, 2008, 68, 97-102.	2.0	34
77	Free radical copolymerization of 2,2,2â€ŧrifluoroethyl αâ€fluoroacrylate and <i>tert</i> â€butyl αâ€ŧrifluoromethylacrylate: Thermal and optical properties of the copolymers. Journal of Polymer Science Part A, 2008, 46, 4383-4391.	2.5	25
78	Synthesis and ITC characterization of novel nanoparticles constituted by poly(<i>γ</i> â€benzyl) Tj ETQq0 0 0 rg	;BT_/Overla	$\operatorname{pres}_{21}^{10}$ Tf 50 5
79	Ruthenium–indenylidene complexes in ring opening metathesis polymerization (ROMP) reactions. Journal of Molecular Catalysis A, 2008, 283, 108-113.	4.8	29
80	Cyclobutenyl Inimers as Versatile Initiators for Macromonomers Synthesis by Atom Transfer Radical Polymerization. Macromolecules, 2008, 41, 9595-9601.	2.2	10
81	Synthesis of graft copolymers from α-oxanorbornenyl macromonomers. New Journal of Chemistry, 2007, 31, 1826.	1.4	33
82	Surface initiated ring-opening metathesis polymerization of norbornene onto Wang and Merrifield resins. Journal of Molecular Catalysis A, 2007, 276, 219-225.	4.8	13
83	Tuning the parameters of the suspension polymerization of styrene, divinylbenzene, and <i>N</i> â€{ <i>p</i> â€vinylbenzyl)―4,4â€dimethylazlactone. Journal of Polymer Science Part A, 2007, 45, 3677-3686.	2.5	9
84	Synthesis and characterization of novel poly(γ-benzyl-L-glutamate) derivatives tailored for the preparation of nanoparticles of pharmaceutical interest. Polymer International, 2007, 56, 317-324.	1.6	31
85	Well-Defined Graft Copolymers Issued from Cyclobutenyl Macromonomers by Combination of ATRP and ROMP. Macromolecules, 2006, 39, 2732-2735.	2.2	61
86	Well-Defined Azlactone-Functionalized (Co)polymers on a Solid Support:Â Synthesis via Supported Living Radical Polymerization and Application as Nucleophile Scavengers. ACS Combinatorial Science, 2006, 8, 522-530.	3.3	47
87	Elaboration of well-defined Rasta resins and their use as supported catalytic systems for atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 5316-5328.	2.5	32
88	Synthesis of new crosslinkable co-polymers containing a push–pull zinc porphyrin for non-linear optical applications. Tetrahedron, 2005, 61, 10113-10121.	1.0	27
89	1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) as ligand for atom transfer radical polymerization (ATRP). European Polymer Journal, 2005, 41, 1576-1581.	2.6	25
90	Synthesis and structural analyses of poly (1, 2-cyclohexene oxide) over solid acid catalyst. Materials Letters, 2005, 59, 759-767.	1.3	45

#	Article	IF	CITATIONS
91	Synthesis and Ring-Opening Metathesis Polymerization(ROMP) Reactivity ofendo-andexo-Norbornenylazlactone Using Ruthenium Catalysts. Macromolecular Chemistry and Physics, 2004, 205, 824-833.	1.1	55
92	Ring Opening Metathesis Polymerization(ROMP) ofcis- andtrans-3,4-Bis(acetyloxymethyl)cyclobut-1-enes and Synthesis of Block Copolymers. Macromolecular Chemistry and Physics, 2004, 205, 1238-1245.	1.1	28
93	Preparation and characterization of azlactone functionalized polymer supports and their application as scavengers. European Polymer Journal, 2004, 40, 2343-2348.	2.6	31
94	Copper-Mediated Living Radical Polymerization of 2-Vinyl-4,4-dimethyl-5-oxazolone. Macromolecules, 2004, 37, 330-335.	2.2	49
95	Grafting of 2-vinyl-4,4-dimethylazlactone onto electron-beam activated poly(propylene) films and fabrics. Application to the immobilization of sericin. Macromolecular Chemistry and Physics, 2002, 203, 1377-1384.	1.1	35
96	Ring-opening metathesis polymerization (ROMP) of isomerically pure functional monomers and acyclic diene metathesis depolymerization (retro-ADMET) of functionalized polyalkenamers. Journal of Molecular Catalysis A, 2002, 190, 117-129.	4.8	33
97	New polyurethanes derived from amino acids. Reactive and Functional Polymers, 2001, 47, 11-21.	2.0	14
98	Nouveaux Élastomères de polyuréthanes dérivés d'aminoacides. Macromolecular Symposia, 1997, 122, 287-290.	' 0.4	4
99	Fixation of pharmacologically active amines on polyphosphonates, 3. Synthesis and preliminary in vitro cytotoxic studies of bis(2-chloroethyl)amino group containing polyphosphonates. Macromolecular Chemistry and Physics, 1996, 197, 3613-3621.	1.1	5
100	Synthesis and preliminary evaluation of chelating resins containing α-aminoalkylphosphonic groups. Reactive & Functional Polymers, 1994, 23, 201-212.	0.8	15
101	Fixation of chelating molecules on polyphosphonates through chemical modification Part I. Synthesis and characterization. Reactive & Functional Polymers, 1993, 19, 47-54.	0.8	7
102	Title is missing!. Die Makromolekulare Chemie, 1989, 190, 2329-2338.	1.1	13
103	Title is missing!. Die Makromolekulare Chemie, 1989, 190, 2339-2345.	1.1	31