Karl Haslam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7201547/publications.pdf

Version: 2024-02-01

1307594 996975 29 240 7 15 citations g-index h-index papers 29 29 29 499 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Molecular diagnostics of myeloproliferative neoplasms. European Journal of Haematology, 2015, 95, 270-279.	2.2	67
2	Incidence of <i><scp>CALR</scp></i> mutations in patients with splanchnic vein thrombosis. British Journal of Haematology, 2015, 168, 459-460.	2.5	36
3	Assessment of <i>CALR </i> mutations in myelofibrosis patients, post-allogeneic stem cell transplantation. British Journal of Haematology, 2014, 166, 800-802.	2.5	30
4	Targeted nextâ€generation sequencing of familial platelet disorder with predisposition to acute myeloid leukaemia. British Journal of Haematology, 2016, 175, 161-163.	2.5	18
5	Allogeneic Hematopoietic Stem Cell Transplantation for aBCR-FGFR1Myeloproliferative Neoplasm Presenting as Acute Lymphoblastic Leukemia. Case Reports in Hematology, 2012, 2012, 1-5.	0.4	17
6	Inter-Laboratory Evaluation of a Next-Generation Sequencing Panel for Acute Myeloid Leukemia. Molecular Diagnosis and Therapy, 2016, 20, 457-461.	3.8	9
7	Monitoring Minimal Residual Disease in the Myeloproliferative Neoplasms: Current Applications and Emerging Approaches. BioMed Research International, 2016, 2016, 1-6.	1.9	8
8	Evaluation of a JAK2 V617F quantitative PCR to monitor residual disease post-allogeneic hematopoietic stem cell transplantation for myeloproliferative neoplasms. Clinical Chemistry and Laboratory Medicine, 2014, 52, e29-31.	2.3	7
9	Development of a Targeted Next-Generation Sequencing Assay to Detect Diagnostically Relevant Mutations of JAK2, CALR, and MPL in Myeloproliferative Neoplasms. Genetic Testing and Molecular Biomarkers, 2018, 22, 98-103.	0.7	6
10	Monitoring Residual Disease in the Ph-Negative Myeloproliferative Neoplasms Post-Allogeneic Stem Cell Transplantation: More Mutations and More Methodologies. Frontiers in Oncology, 2014, 4, 212.	2.8	4
11	The molecular landscape of childhood myeloproliferative neoplasms. Leukemia Research, 2014, 38, 997-998.	0.8	4
12	Isolated erythrocytosis associated with a CALR mutation. Blood Cells, Molecules, and Diseases, 2017, 66, 6-7.	1.4	4
13	Acute Lymphoblastic Leukemia Arising inCALRMutated Essential Thrombocythemia. Case Reports in Hematology, 2016, 2016, 1-5.	0.4	3
14	Who to screen for calreticulin mutations? An audit of real-life practice and review of current evidence. European Journal of Internal Medicine, 2017, 40, e22-e23.	2.2	3
15	Characterization of a novel variant BCR–ABL1 fusion transcript in a patient with chronic myeloid leukemia: Implications for molecular monitoring. Hematology/ Oncology and Stem Cell Therapy, 2017, 10, 85-88.	0.9	3
16	The JAK2 V617F mutation and thrombocytopenia. Hematology/ Oncology and Stem Cell Therapy, 2017, 10, 44-45.	0.9	3
17	An acquired <i>NRAS</i> mutation contributes to neutrophilic progression in a patient with primary myelofibrosis. British Journal of Haematology, 2018, 183, 308-310.	2,5	3
18	International external quality assurance of JAK2 V617F quantification. Annals of Hematology, 2019, 98, 1111-1118.	1.8	3

#	Article	IF	CITATIONS
19	The JAK2 V617F Allele Burden in Latent Myeloproliferative Neoplasms Presenting with Splanchnic Vein Thrombosis. Pathology and Oncology Research, 2016, 22, 229-230.	1.9	2
20	A novel molecular assay using hybridisation probes and melt curve analysis for CALR exon 9 mutation detection in myeloproliferative neoplasms. Journal of Clinical Pathology, 2017, 70, 662-668.	2.0	2
21	Chronic Myeloid Leukemia with an e6a2BCR-ABL1Fusion Transcript: Cooperating Mutations at Blast Crisis and Molecular Monitoring. Case Reports in Hematology, 2017, 2017, 1-5.	0.4	2
22	Molecular Investigation of a Suspected Myeloproliferative Neoplasm in Patients with Basophilia. Journal of Clinical and Diagnostic Research JCDR, 2017, 11, EL01.	0.8	2
23	Considerations and Recommendations for a New Molecular Diagnostic Algorithm for the Myeloproliferative Neoplasms. Genetic Testing and Molecular Biomarkers, 2014, 18, 749-753.	0.7	1
24	Evading Capture by Residual Disease Monitoring: Extramedullary Manifestation of JAK2V617F-Positive Primary Myelofibrosis After Allogeneic Stem Cell Transplantation. Case Reports in Hematology, 2015, 2015, 1-4.	0.4	1
25	Capricious CALR mutated clones in myeloproliferative neoplasms. Blood Cells, Molecules, and Diseases, 2016, 57, 110-111.	1.4	1
26	The mutant CALR allele burden in essential thrombocythemia at transformation to acute myeloid leukemia. Blood Cells, Molecules, and Diseases, 2017, 65, 66-67.	1.4	1
27	CALR mutation profile in Irish patients with myeloproliferative neoplasms. Hematology/ Oncology and Stem Cell Therapy, 2016, 9, 112-115.	0.9	О
28	Protracted Clonal Trajectory of a JAK2 V617F-Positive Myeloproliferative Neoplasm Developing during Long-Term Remission from Acute Myeloid Leukemia. Case Reports in Hematology, 2018, 2018, 1-4.	0.4	0
29	Neutrophilia and the JAK2 V617F Mutation. Pathology and Oncology Research, 2019, 25, 437-438.	1.9	0