Iswar K Hariharan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/720148/publications.pdf

Version: 2024-02-01

46 papers

6,880 citations

172457 29 h-index 223800 46 g-index

73 all docs 73 docs citations

73 times ranked 7274 citing authors

#	Article	IF	CITATIONS
1	Comparative Genomics of the Eukaryotes. Science, 2000, 287, 2204-2215.	12.6	1,573
2	The Drosophila Mst Ortholog, hippo, Restricts Growth and Cell Proliferation and Promotes Apoptosis. Cell, 2003, 114, 457-467.	28.9	845
3	salvador Promotes Both Cell Cycle Exit and Apoptosis in Drosophila and Is Mutated in Human Cancer Cell Lines. Cell, 2002, 110, 467-478.	28.9	755
4	The Drosophila Tuberous Sclerosis Complex Gene Homologs Restrict Cell Growth and Cell Proliferation. Cell, 2001, 105, 345-355.	28.9	516
5	Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature, 2001, 413, 311-316.	27.8	411
6	Mutations in erupted, the Drosophila Ortholog of Mammalian Tumor Susceptibility Gene 101, Elicit Non-Cell-Autonomous Overgrowth. Developmental Cell, 2005, 9, 699-710.	7.0	279
7	Regenerative Growth in Drosophila Imaginal Discs Is Regulated by Wingless and Myc. Developmental Cell, 2009, 16, 797-809.	7.0	253
8	Regulation of Imaginal Disc Growth by Tumor-Suppressor Genes inDrosophila. Annual Review of Genetics, 2006, 40, 335-361.	7.6	225
9	A Survey of Human Disease Gene Counterparts in the Drosophila Genome. Journal of Cell Biology, 2000, 150, F23-F30.	5.2	185
10	Retinoids Regulate a Developmental Checkpoint for Tissue Regeneration in Drosophila. Current Biology, 2010, 20, 458-463.	3.9	162
11	The Drosophila F Box Protein Archipelago Regulates dMyc Protein Levels In Vivo. Current Biology, 2004, 14, 965-974.	3.9	133
12	Organ Size Control: Lessons from Drosophila. Developmental Cell, 2015, 34, 255-265.	7.0	124
13	Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. ELife, 2016, 5, .	6.0	108
14	Regeneration and Transdetermination in <i>Drosophila</i> Imaginal Discs. Annual Review of Genetics, 2012, 46, 289-310.	7.6	107
15	The H3K27me3 Demethylase dUTX Is a Suppressor of Notch- and Rb-Dependent Tumors in <i>Drosophila</i> . Molecular and Cellular Biology, 2010, 30, 2485-2497.	2.3	106
16	The Drosophila tumor suppressors Expanded and Merlin differentially regulate cell cycle exit, apoptosis, and Wingless signaling. Developmental Biology, 2007, 304, 102-115.	2.0	94
17	A Buoyancy-Based Screen of Drosophila Larvae for Fat-Storage Mutants Reveals a Role for Sir2 in Coupling Fat Storage to Nutrient Availability. PLoS Genetics, 2010, 6, e1001206.	3.5	91
18	Capicua Regulates Cell Proliferation Downstream of the Receptor Tyrosine Kinase/Ras Signaling Pathway. Current Biology, 2007, 17, 728-733.	3.9	89

#	Article	IF	Citations
19	CoinFLP: a system for efficient mosaic screening and for visualizing clonal boundaries in <i>Drosophila</i> . Development (Cambridge), 2015, 142, 597-606.	2.5	73
20	TIE-DYE: a combinatorial marking system to visualize and genetically manipulate clones during development in <i>Drosophila melanogaster</i>). Development (Cambridge), 2013, 140, 3275-3284.	2.5	71
21	Differences in levels of the transmembrane protein Crumbs can influence cell survival at clonal boundaries. Developmental Biology, 2012, 368, 358-369.	2.0	61
22	Imaginal disc regeneration takes flight. Current Opinion in Cell Biology, 2017, 48, 10-16.	5.4	53
23	Infrequent mutations of Archipelago (hAGO, hCDC4, Fbw7) in primary ovarian cancer. Gynecologic Oncology, 2005, 98, 124-128.	1.4	46
24	Mutations in the Drosophila Orthologs of the F-Actin Capping Protein \hat{l}_z -and \hat{l}_z -Subunits Cause Actin Accumulation and Subsequent Retinal Degeneration. Genetics, 2005, 171, 1757-1765.	2.9	44
25	Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila. ELife, 2020, 9, .	6.0	41
26	Plexins function in epithelial repair in both Drosophila and zebrafish. Nature Communications, 2016, 7, 12282.	12.8	40
27	Single-cell transcriptomics of the Drosophila wing disc reveals instructive epithelium-to-myoblast interactions. ELife, 2021, 10, .	6.0	39
28	The Drosophila F-box protein Fbxl7 binds to the protocadherin Fat and regulates Dachs localization and Hippo signaling. ELife, 2014, 3, e03383.	6.0	38
29	Yeast, Flies, Worms, and Fish in the Study of Human Disease. New England Journal of Medicine, 2003, 348, 2457-2463.	27.0	35
30	The BMP2/4 ortholog Dpp can function as an inter-organ signal that regulates developmental timing. Life Science Alliance, 2018, 1, e201800216.	2.8	35
31	Indeterminate Growth: Could It Represent the Ancestral Condition?. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019174.	5.5	32
32	Growth Regulation: A Beginning for the Hippo Pathway. Current Biology, 2006, 16, R1037-R1039.	3.9	31
33	Mutation of the Gene Encoding the Ubiquitin Activating Enzyme Uba1 Causes Tissue Overgrowth in Drosophila. Fly, 2007, 1, 95-105.	1.7	30
34	CtBP impedes JNK- and Upd/STAT-driven cell fate misspecifications in regenerating Drosophila imaginal discs. ELife, 2018, 7, .	6.0	26
35	Persistence of RNAi-Mediated Knockdown in <i>Drosophila</i> Complicates Mosaic Analysis Yet Enables Highly Sensitive Lineage Tracing. Genetics, 2016, 203, 109-118.	2.9	24
36	Identification and Characterization of Genes Required for Compensatory Growth in <i>Drosophila</i> . Genetics, 2011, 189, 1309-1326.	2.9	21

#	Article	IF	CITATIONS
37	Ets21C sustains a pro-regenerative transcriptional program in blastema cells of Drosophila imaginal discs. Current Biology, 2022, 32, 3350-3364.e6.	3.9	17
38	How Growth Abnormalities Delay "Puberty―in <i>Drosophila</i> . Science Signaling, 2012, 5, pe27.	3.6	15
39	Membrane potential regulates Hedgehog signalling in the <i>Drosophila</i> wing imaginal disc. EMBO Reports, 2021, 22, e51861.	4.5	13
40	Energy stress tames the Hippo pathway. Nature Cell Biology, 2015, 17, 362-363.	10.3	7
41	Ras and Rap: Are Former Enemies Now Friends?. Developmental Cell, 2005, 8, 303-304.	7.0	5
42	The Hippo pathway coactivator Yorkie can reprogram cell fates and create compartment-boundary–like interactions at clone margins. Science Advances, 2020, 6, .	10.3	5
43	Imaginal Disc Regeneration: Something Old, Something New. Cold Spring Harbor Perspectives in Biology, 2021, , a040733.	5.5	5
44	Size regulation blossoms in Kobe. Development (Cambridge), 2016, 143, 2691-2695.	2.5	3
45	Ras Brakes for Hippo. Developmental Cell, 2017, 42, 561-562.	7.0	1
46	Harnessing epithelial homeostatic mechanisms to fight cancer. Molecular Biology of the Cell, 2019, 30, 1641-1644.	2.1	1