Yang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7201402/publications.pdf

Version: 2024-02-01

22102 13827 13,431 144 67 113 citations h-index g-index papers 148 148 148 17714 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting. Journal of the American Chemical Society, 2016, 138, 14686-14693.	6.6	647
2	Exosomes mediate the cell-to-cell transmission of IFN- \hat{l} ±-induced antiviral activity. Nature Immunology, 2013, 14, 793-803.	7. O	464
3	Nitrogenâ€Doped Carbon Dots: A Facile and General Preparation Method, Photoluminescence Investigation, and Imaging Applications. Chemistry - A European Journal, 2013, 19, 2276-2283.	1.7	387
4	Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy and Environmental Science, 2013, 6, 1362.	15.6	355
5	Positive Potential Operation of a Cathodic Electrogenerated Chemiluminescence Immunosensor Based on Luminol and Graphene for Cancer Biomarker Detection. Analytical Chemistry, 2011, 83, 3817-3823.	3.2	347
6	Ionic liquids in surface electrochemistry. Physical Chemistry Chemical Physics, 2010, 12, 1685.	1.3	327
7	Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Microporous and Mesoporous Materials, 2008, 114, 431-439.	2.2	306
8	Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3Hollow Spheres. Journal of Physical Chemistry C, 2007, 111, 2123-2127.	1.5	291
9	Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 2015, 7, 1250-1269.	2.8	290
10	Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosensors and Bioelectronics, 2019, 124-125, 184-190.	5.3	241
11	Non-Redox Modulated Fluorescence Strategy for Sensitive and Selective Ascorbic Acid Detection with Highly Photoluminescent Nitrogen-Doped Carbon Nanoparticles via Solid-State Synthesis. Analytical Chemistry, 2015, 87, 8524-8530.	3.2	237
12	Universal Ti ₃ C ₂ MXenes Based Self-Standard Ratiometric Fluorescence Resonance Energy Transfer Platform for Highly Sensitive Detection of Exosomes. Analytical Chemistry, 2018, 90, 12737-12744.	3.2	230
13	An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochemistry Communications, 2005, 7, 1357-1363.	2.3	229
14	Electrochemical Deposition of Silver in Room-Temperature Ionic Liquids and Its Surface-Enhanced Raman Scattering Effect. Langmuir, 2004, 20, 10260-10267.	1.6	225
15	Characterization of Carbonized Polydopamine Nanoparticles Suggests Ordered Supramolecular Structure of Polydopamine. Langmuir, 2014, 30, 5497-5505.	1.6	214
16	An "on-off-on―fluorescent nanoprobe for recognition of chromium(VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Analytica Chimica Acta, 2017, 968, 85-96.	2.6	205
17	Colorimetric and Ultrasensitive Bioassay Based on a Dual-Amplification System Using Aptamer and DNAzyme. Analytical Chemistry, 2012, 84, 4711-4717.	3.2	203
18	Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosensors and Bioelectronics, 2011, 26, 2632-2637.	5.3	196

#	Article	IF	CITATIONS
19	Ag3PO4/SnO2 semiconductor nanocomposites with enhanced photocatalytic activity and stability. New Journal of Chemistry, 2012, 36, 1541.	1.4	185
20	Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer. Nano Letters, 2017, 17, 2138-2145.	4.5	179
21	DNA-Directed Self-Assembly of Graphene Oxide with Applications to Ultrasensitive Oligonucleotide Assay. ACS Nano, 2011, 5, 3817-3822.	7.3	177
22	Metal oxide hollow nanostructures: Fabrication and Li storage performance. Journal of Power Sources, 2013, 238, 376-387.	4.0	174
23	In Situ Formation of Gold Nanoparticles Decorated Ti ₃ C ₂ MXenes Nanoprobe for Highly Sensitive Electrogenerated Chemiluminescence Detection of Exosomes and Their Surface Proteins. Analytical Chemistry, 2020, 92, 5546-5553.	3.2	170
24	Different roles of ionic liquids in lithium batteries. Journal of Power Sources, 2016, 334, 221-239.	4.0	164
25	Sensitive and Rapid Screening of T4 Polynucleotide Kinase Activity and Inhibition Based on Coupled Exonuclease Reaction and Graphene Oxide Platform. Analytical Chemistry, 2011, 83, 8396-8402.	3.2	163
26	Sensitive Electrochemical Aptamer Biosensor for Dynamic Cell Surface <i>N</i> Glycan Evaluation Featuring Multivalent Recognition and Signal Amplification on a Dendrimer–Graphene Electrode Interface. Analytical Chemistry, 2014, 86, 4278-4286.	3.2	158
27	Dynamic Evaluation of Cell Surface <i>N</i> -Glycan Expression via an Electrogenerated Chemiluminescence Biosensor Based on Concanavalin A-Integrating Gold-Nanoparticle-Modified Ru(bpy) ₃ ²⁺ -Doped Silica Nanoprobe. Analytical Chemistry, 2013, 85, 4431-4438.	3.2	155
28	Formation of Bi ₂ WO ₆ Bipyramids with Vacancy Pairs for Enhanced Solarâ€Driven Photoactivity. Advanced Functional Materials, 2015, 25, 3726-3734.	7.8	155
29	Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosensors and Bioelectronics, 2012, 35, 63-68.	5.3	150
30	Highly active horseradish peroxidase immobilized in 1-butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol–gel host materials. Chemical Communications, 2005, , 1778-1780.	2.2	145
31	Highly Sensitive Electrogenerated Chemiluminescence Biosensor in Profiling Protein Kinase Activity and Inhibition Using Gold Nanoparticle as Signal Transduction Probes. Analytical Chemistry, 2010, 82, 9566-9572.	3.2	145
32	Heterostructures Based on 2D Materials: A Versatile Platform for Efficient Catalysis. Advanced Materials, 2019, 31, e1804828.	11.1	142
33	Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 260, 118196.	10.8	142
34	A novel room temperature ionic liquid sol–gel matrix for amperometric biosensor application. Green Chemistry, 2005, 7, 655.	4.6	137
35	Carbon-coated hollow mesoporous FeP microcubes: an efficient and stable electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 8974-8977.	5 . 2	137
36	Self-Polymerized Dopamine-Decorated Au NPs and Coordinated with Fe-MOF as a Dual Binding Sites and Dual Signal-Amplifying Electrochemical Aptasensor for the Detection of CEA. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5500-5510.	4.0	130

#	Article	IF	CITATIONS
37	Intrinsic "Vacancy Point Defect―Induced Electrochemiluminescence from Coreless Supertetrahedral Chalcogenide Nanocluster. Journal of the American Chemical Society, 2016, 138, 7718-7724.	6.6	128
38	Selective detection of Fe ³⁺ ions based on fluorescence MXene quantum dots <i>via</i> a mechanism integrating electron transfer and inner filter effect. Nanoscale, 2020, 12, 1826-1832.	2.8	128
39	Duplex DNA/Graphene Oxide Biointerface: From Fundamental Understanding to Specific Enzymatic Effects. Advanced Functional Materials, 2012, 22, 3083-3088.	7.8	127
40	Facile synthesis of AgBr nanoplates with exposed $\{111\}$ facets and enhanced photocatalytic properties. Chemical Communications, 2012, 48, 275-277.	2.2	123
41	Functionalization of single-walled carbon nanotubes with Prussian blue. Electrochemistry Communications, 2004, 6, 1180-1184.	2.3	122
42	A Rare (3,4)â€Connected Chalcogenide Superlattice and Its Photoelectric Effect. Angewandte Chemie - International Edition, 2008, 47, 113-116.	7.2	114
43	Preparation and Properties of Nanostructure Anatase TiO2 Monoliths Using 1-Butyl-3-methylimidazolium Tetrafluoroborate Room-Temperature Ionic Liquids as Template Solvents. Crystal Growth and Design, 2005, 5, 1643-1649.	1.4	108
44	A Room-Temperature Ionic-Liquid-Templated Proton-Conducting Gelatinous Electrolyte. Journal of Physical Chemistry B, 2004, 108, 17512-17518.	1.2	106
45	DNA Assembled Gold Nanoparticles Polymeric Network Blocks Modular Highly Sensitive Electrochemical Biosensors for Protein Kinase Activity Analysis and Inhibition. Analytical Chemistry, 2014, 86, 6153-6159.	3.2	102
46	2D titanium carbide MXenes as emerging optical biosensing platforms. Biosensors and Bioelectronics, 2021, 171, 112730.	5.3	101
47	Highâ€Temperature Gating of Solidâ€State Nanopores with Thermoâ€Responsive Macromolecular Nanoactuators in Ionic Liquids. Advanced Materials, 2012, 24, 962-967.	11.1	98
48	Dye-Sensitized and Localized Surface Plasmon Resonance Enhanced Visible-Light Photoelectrochemical Biosensors for Highly Sensitive Analysis of Protein Kinase Activity. Analytical Chemistry, 2016, 88, 922-929.	3.2	98
49	A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte. Electrochimica Acta, 2006, 51, 1925-1931.	2.6	95
50	Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst, The, 2011, 136, 4732.	1.7	95
51	Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells. Nanoscale, 2016, 8, 2205-2211.	2.8	95
52	Sensitive Nanochannel Biosensor for T4 Polynucleotide Kinase Activity and Inhibition Detection. Analytical Chemistry, 2013, 85, 334-340.	3.2	92
53	Three-Dimensional Nitrogen-Doped Graphene/MnO Nanoparticle Hybrids as a High-Performance Catalyst for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2015, 119, 8032-8037.	1.5	92
54	Redox Conversion of Chromium(VI) and Arsenic(III) with the Intermediates of Chromium(V) and Arsenic(IV) via AuPd/CNTs Electrocatalysis in Acid Aqueous Solution. Environmental Science & Eamp; Technology, 2015, 49, 9289-9297.	4.6	91

#	Article	IF	CITATIONS
55	Reusable and Dual-Potential Responses Electrogenerated Chemiluminescence Biosensor for Synchronously Cytosensing and Dynamic Cell Surface N-Glycan Evaluation. Analytical Chemistry, 2015, 87, 9777-9785.	3.2	90
56	Single chain fragment variable recombinant antibody functionalized gold nanoparticles for a highly sensitive colorimetric immunoassay. Biosensors and Bioelectronics, 2009, 24, 2853-2857.	5. 3	86
57	Interrupted Chalcogenideâ€Based Zeoliteâ€Analogue Semiconductor: Atomically Precise Doping for Tunable Electroâ€Photoelectrochemical Properties. Angewandte Chemie - International Edition, 2015, 54, 5103-5107.	7.2	84
58	Preparation of Porous Aminopropylsilsesquioxane by a Nonhydrolytic Solâ^'Gel Method in Ionic Liquid Solvent. Langmuir, 2005, 21, 1618-1622.	1.6	83
59	Integrating Highly Efficient Recognition and Signal Transition of g-C ₃ N ₄ Embellished Ti ₃ C ₂ MXene Hybrid Nanosheets for Electrogenerated Chemiluminescence Analysis of Protein Kinase Activity. Analytical Chemistry, 2020, 92, 10668-10676.	3.2	80
60	Multivalency Interface and g-C ₃ N ₄ Coated Liquid Metal Nanoprobe Signal Amplification for Sensitive Electrogenerated Chemiluminescence Detection of Exosomes and Their Surface Proteins. Analytical Chemistry, 2019, 91, 12100-12107.	3.2	78
61	Carbon nanotube enhanced label-free detection of microRNAs based on hairpin probe triggered solid-phase rolling-circle amplification. Nanoscale, 2015, 7, 987-993.	2.8	77
62	Self-Catalyzed Surface Reaction-Induced Fluorescence Resonance Energy Transfer on Cysteine-Stabilized MnO ₂ Quantum Dots for Selective Detection of Dopamine. Analytical Chemistry, 2021, 93, 3586-3593.	3.2	74
63	\hat{l}_{\pm} - and \hat{l}^{3} -Fe2O3 nanoparticle/nitrogen doped carbon nanotube catalysts for high-performance oxygen reduction reaction. Science China Materials, 2015, 58, 683-692.	3.5	73
64	Flawed MoO ₂ belts transformed from MoO ₃ on a graphene template for the hydrogen evolution reaction. Nanoscale, 2015, 7, 7040-7044.	2.8	73
65	A novel sensor based on electrodeposited Au–Pt bimetallic nano-clusters decorated on graphene oxide (GO)–electrochemically reduced GO for sensitive detection of dopamine and uric acid. Sensors and Actuators B: Chemical, 2015, 221, 1542-1553.	4.0	73
66	Highly sensitive photoelectrochemical biosensor for kinase activity detection and inhibition based on the surface defect recognition and multiple signal amplification of metal-organic frameworks. Biosensors and Bioelectronics, 2017, 97, 107-114.	5.3	70
67	A Novel Electrochemiluminescence Immunosensor for the Analysis of HIV-1 p24 Antigen Based on P-RGO@Au@Ru-SiO ₂ Composite. ACS Applied Materials & Therfaces, 2015, 7, 24438-24445.	4.0	69
68	Wavelength-Dependent Surface Plasmon Coupling Electrochemiluminescence Biosensor Based on Sulfur-Doped Carbon Nitride Quantum Dots for K-RAS Gene Detection. Analytical Chemistry, 2019, 91, 13780-13786.	3.2	67
69	In situ growth of TiO2 nanowires on Ti3C2 MXenes nanosheets as highly sensitive luminol electrochemiluminescent nanoplatform for glucose detection in fruits, sweat and serum samples. Biosensors and Bioelectronics, 2021, 194, 113600.	5.3	65
70	A highly sensitive chemiluminescence sensor for detecting mercury (II) ions: a combination of Exonuclease III-aided signal amplification and graphene oxide-assisted background reduction. Science China Chemistry, 2015, 58, 514-518.	4.2	63
71	Label-Free Nanopore Proximity Bioassay for Platelet-Derived Growth Factor Detection. Analytical Chemistry, 2015, 87, 5677-5682.	3.2	61
72	Sensitive electrogenerated chemiluminescence biosensors for protein kinase activity analysis based on bimetallic catalysis signal amplification and recognition of Au and Pt loaded metal-organic frameworks nanocomposites. Biosensors and Bioelectronics, 2018, 109, 132-138.	5.3	61

#	Article	IF	CITATIONS
73	Label-Free Nanopore Biosensor for Rapid and Highly Sensitive Cocaine Detection in Complex Biological Fluids. ACS Sensors, 2017, 2, 227-234.	4.0	60
74	An excellent enzyme biosensor based on Sb-doped SnO2 nanowires. Biosensors and Bioelectronics, 2010, 25, 2436-2441.	5. 3	59
75	Applications of graphene and its derivatives in intracellular biosensing and bioimaging. Analyst, The, 2016, 141, 4541-4553.	1.7	58
76	Ti3C2 MXene mediated Prussian blue in situ hybridization and electrochemical signal amplification for the detection of exosomes. Talanta, 2021, 224, 121879.	2.9	57
77	Nanomaterials in carbohydrate biosensors. TrAC - Trends in Analytical Chemistry, 2014, 58, 54-70.	5.8	55
78	Enzymeâ€free Electrochemical Detection of Hydrogen Peroxide Based on the <scp>Threeâ€Dimensional</scp> Flowerâ€like Cuâ€based Metal Organic Frameworks and <scp>MXene</scp> Nanosheets ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2181-2187.	2.6	55
79	Environmental transformation of graphene oxide in the aquatic environment. Chemosphere, 2021, 262, 127885.	4.2	54
80	Ultrasensitive detection of cancer cells and glycan expression profiling based on a multivalent recognition and alkaline phosphatase-responsive electrogenerated chemiluminescence biosensor. Nanoscale, 2014, 6, 11196-11203.	2.8	51
81	Size-controlled synthesis and characterization of quantum-size SnO2 nanocrystallites by a solvothermal route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 312, 219-225.	2.3	50
82	Room-temperature ionic liquids as media to enhance the electrochemical stability of self-assembled monolayers of alkanethiols on gold electrodes. Chemical Communications, 2005, , 360.	2.2	49
83	Doped graphene: synthesis, properties and bioanalysis. RSC Advances, 2015, 5, 49521-49533.	1.7	49
84	Silver nanoparticle plasmonic enhanced f \tilde{A} ¶rster resonance energy transfer (FRET) imaging of protein-specific sialylation on the cell surface. Nanoscale, 2017, 9, 9841-9847.	2.8	48
85	Multiple signal amplification electrogenerated chemiluminescence biosensors for sensitive protein kinase activity analysis and inhibition. Biosensors and Bioelectronics, 2015, 68, 771-776.	5.3	45
86	Co ₃ O ₄ Hollow Polyhedrons as Bifunctional Electrocatalysts for Reduction and Evolution Reactions of Oxygen. Particle and Particle Systems Characterization, 2016, 33, 887-895.	1.2	45
87	Bamboo prepared carbon quantum dots (CQDs) for enhancing Bi3Ti4O12 nanosheets photocatalytic activity. Journal of Alloys and Compounds, 2018, 752, 106-114.	2.8	43
88	Visible-Light Induced Photocatalytic Activity of Electrospun-TiO ₂ in Arsenic(III) Oxidation. ACS Applied Materials & Diterials & ACS Applied Materials & Diterials	4.0	42
89	Highly sensitive composite electrode based on electrospun carbon nanofibers and ionic liquid. Electrochemistry Communications, 2010, 12, 1108-1111.	2.3	41
90	A functional glycoprotein competitive recognition and signal amplification strategy for carbohydrate–protein interaction profiling and cell surface carbohydrate expression evaluation. Nanoscale, 2013, 5, 7349.	2.8	39

#	Article	IF	Citations
91	Substitution Boosts Charge Separation for High Solar-Driven Photocatalytic Performance. ACS Applied Materials & Driven Photocatalytic Performance Photocatalytic P	4.0	39
92	Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin. Biosensors and Bioelectronics, 2015, 70, 404-410.	5.3	37
93	Molybdenum-doped mesoporous carbon/graphene composites as efficient electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 19969-19973.	5.2	37
94	Glycosylated aniline polymer sensor: Amine to imine conversion on protein–carbohydrate binding. Biosensors and Bioelectronics, 2013, 46, 183-189.	5.3	35
95	A novel ECL method for histone acetyltransferases (HATs) activity analysis by integrating HCR signal amplification and ECL silver clusters. Talanta, 2019, 198, 39-44.	2.9	34
96	Multienzyme decorated polysaccharide amplified electrogenerated chemiluminescence biosensor for cytosensing and cell surface carbohydrate profiling. Biosensors and Bioelectronics, 2017, 89, 1013-1019.	5.3	33
97	Temperatureâ€Responsive Polymer/Carbon Nanotube Hybrids: Smart Conductive Nanocomposite Films for Modulating the Bioelectrocatalysis of NADH. Chemistry - A European Journal, 2012, 18, 3687-3694.	1.7	32
98	Selective electrochemical detection of dopamine using nitrogen-doped graphene/manganese monoxide composites. RSC Advances, 2015, 5, 85065-85072.	1.7	32
99	Nanopore-Based, Label-Free, and Real-Time Monitoring Assay for DNA Methyltransferase Activity and Inhibition. Analytical Chemistry, 2017, 89, 13252-13260.	3.2	32
100	Strongly Coupled Interface Structure in CoFe/Co ₃ O ₄ Nanohybrids as Efficient Oxygen Evolution Reaction Catalysts. ChemSusChem, 2019, 12, 4442-4451.	3.6	32
101	Highly Efficient AuPd/Carbon Nanotube Nanocatalysts for the Electroâ€Fenton Process. Chemistry - A European Journal, 2015, 21, 7611-7620.	1.7	30
102	A label-free DNAzyme-based nanopore biosensor for highly sensitive and selective lead ion detection. Analytical Methods, 2016, 8, 7040-7046.	1.3	29
103	Orientational DNA binding and directed transport on nanomaterial heterojunctions. Nanoscale, 2020, 12, 5217-5226.	2.8	29
104	The Inherent Capacitive Behavior of Imidazolium-based Room-Temperature Ionic Liquids at Carbon Paste Electrode. Electrochemical and Solid-State Letters, 2005, 8, J17.	2.2	28
105	Ratio fluorescence analysis of T4 polynucleotide kinase activity based on the formation of a graphene quantum dot–copper nanocluster nanohybrid. Nanoscale, 2019, 11, 13903-13908.	2.8	26
106	Amorphous CoFe Double Hydroxides Decorated with Nâ€Doped CNTs for Efficient Electrochemical Oxygen Evolution. ChemSusChem, 2019, 12, 2679-2688.	3.6	26
107	Self-assembled oligo(phenylene ethynylene)s/graphene nanocomposite with improved electrochemical performances for dopamine determination. Analytica Chimica Acta, 2013, 767, 59-65.	2.6	25
108	Single-Molecule Analysis of Human Telomere Sequence Interactions with G-quadruplex Ligand. Analytical Chemistry, 2016, 88, 4533-4540.	3.2	25

#	Article	IF	Citations
109	Ionic Liquid Assisted Electrospun Cellulose Acetate Fibers for Aqueous Removal of Triclosan. Langmuir, 2015, 31, 1820-1827.	1.6	24
110	A novel electrogenerated chemiluminescence biosensor for histone acetyltransferases activity analysis and inhibition based on mimetic superoxide dismutase of tannic acid assembled nanoprobes. Biosensors and Bioelectronics, 2018, 122, 205-210.	5.3	24
111	IrO2/SnO2 electrodes: prepared by sol–gel process and their electrocatalytic for pyrocatechol. Acta Materialia, 2004, 52, 721-727.	3.8	23
112	Morphology-Controlled Synthesis of Monodisperse ZnO Troughs at the Airâ-'Water Interface under Mild Conditions. Journal of Physical Chemistry B, 2005, 109, 22244-22249.	1.2	23
113	Pyrenebutyrate-functionalized graphene/poly(3-octyl-thiophene) nanocomposites based photoelectrochemical cell. Journal of Electroanalytical Chemistry, 2011, 656, 269-273.	1.9	23
114	Precise mono-Cu ⁺ ion doping enhanced electrogenerated chemiluminescence from Cd–In–S supertetrahedral chalcogenide nanoclusters for dopamine detection. Nanoscale, 2018, 10, 15932-15937.	2.8	22
115	Visibleâ€Lightâ€Driven, Tunable, Photoelectrochemical Performance of a Series of Metalâ€Chelate, Dyeâ€Organized, Crystalline, CdS Nanoclusters. Chemistry - A European Journal, 2014, 20, 8297-8301.	1.7	21
116	Self-Assembled Nanorods of Phenylboronic Acid Functionalized Pyrene for <i>In Situ</i> Two-Photon Imaging of Cell Surface Sialic Acids and Photodynamic Therapy. Analytical Chemistry, 2021, 93, 7029-7036.	3.2	21
117	Influence of the binder on the electron transport in the dye-sensitized TiO2 electrode. Thin Solid Films, 2005, 484, 346-351.	0.8	20
118	Highly Active Electrochemiluminescence of Ruthenium Complex Co-assembled Chalcogenide Nanoclusters and the Application for Label-Free Detection of Alkaline Phosphatase. Analytical Chemistry, 2021, 93, 15794-15801.	3.2	20
119	Self-Phosphorylating Deoxyribozyme Initiated Cascade Enzymatic Amplification for Guanosine-5′-triphosphate Detection. Analytical Chemistry, 2014, 86, 7907-7912.	3.2	19
120	Carbon nanoparticle ionic liquid hybrids and their photoluminescence properties. Journal of Colloid and Interface Science, 2011, 358, 146-150.	5.0	18
121	Electrodeposition of Pt nanoclusters on the surface modified by monolayer poly(amidoamine) dendrimer film. Electrochemistry Communications, 2005, 7, 1209-1212.	2.3	17
122	A sensitive electrogenerated chemiluminescence biosensor for galactosyltransferase activity analysis based on a graphitic carbon nitride nanosheet interface and polystyrene microsphere-enhanced responses. RSC Advances, 2016, 6, 32804-32810.	1.7	17
123	Effect of methylsisesquioxane filler on the properties of ionic liquid based polymer electrolyte. Polymer, 2005, 46, 7578-7584.	1.8	16
124	Anti-Site Defects-Assisted Enhancement of Electrogenerated Chemiluminescence from in Situ Mn ²⁺ -Doped Supertetrahedral Chalcogenide Nanoclusters. ACS Applied Materials & Interfaces, 2018, 10, 38223-38229.	4.0	16
125	Recent Progress of Novel Electrochemiluminescence Nanoprobes and Their Analytical Applications. Frontiers in Chemistry, 2020, 8, 626243.	1.8	16
126	In-situ one-step electrospray fabrication of polyvinylidene fluoride encapsulated CsPbBr3 spheres with high stability and cell imaging application. Inorganic Chemistry Communication, 2019, 106, 99-103.	1.8	14

#	Article	IF	CITATIONS
127	Recent Advances in Protein Kinase Activity Analysis Based on Nanomaterials. International Journal of Molecular Sciences, 2019, 20, 1440.	1.8	14
128	Synthesis and ionic conductivity of polymeric ion gel containing room temperature ionic liquid and phosphotungstic acid. Solid State Ionics, 2006, 177, 1281-1286.	1.3	13
129	AgBr Nanocrystals from Plates to Cubes and Their Photocatalytic Properties. ChemCatChem, 2013, 5, 1426-1430.	1.8	13
130	Nitrogen-Doped Carbon Nanotubes Encapsulated Cobalt Nanoparticles Hybrids for Highly Efficient Catalysis of Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2018, 165, J3052-J3058.	1.3	12
131	Title is missing!. Journal of Nanoparticle Research, 2000, 2, 309-313.	0.8	10
132	Application of Inorganic Layered Materials in Electrochemical Sensors. Chinese Journal of Analytical Chemistry, 2015, 43, 1648-1655.	0.9	10
133	Multichannel sensor array of carbon dots-metal ion pairs for accurate biological thiols analysis and cancer cell discrimination. Sensors and Actuators B: Chemical, 2022, 353, 131119.	4.0	10
134	Catechin-inspired gold nanocluster nanoprobe for selective and ratiometric dopamine detection via forming azamonardine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 274, 121142.	2.0	9
135	Label-free imaging of epidermal growth factor receptor-induced response in single living cells. Analyst, The, 2018, 143, 5264-5270.	1.7	8
136	Highly sensitive electrogenerated chemiluminescence biosensor for galactosyltransferase activity and inhibition detection using gold nanorod and enzymatic dual signal amplification. Journal of Electroanalytical Chemistry, 2016, 781, 83-89.	1.9	7
137	Preparation and Bioelectrochemical Application of Gold Nanoparticles-Chitosan-Graphene Nanomaterials. Acta Chimica Sinica, 2012, 70, 2213.	0.5	7
138	Phosphate-guanidine interaction based fluorometric strategy for protein kinase activity sensing. Sensors and Actuators B: Chemical, 2019, 290, 512-519.	4.0	6
139	Electrochemiluminescence Singleâ€eell Analysis on Nanostructured Interface. Electroanalysis, 2022, 34, 937-946.	1.5	5
140	DNA induced FePt bimetallic nanoparticles on reduced graphene oxide for electrochemical determination of dopamine. Chemical Research in Chinese Universities, 2015, 31, 406-411.	1.3	4
141	Glassy carbon electrode modified with gold nanoparticles and hemoglobin in a chitosan matrix for improved pH-switchable sensing of hydrogen peroxide. Mikrochimica Acta, 2015, 182, 2461-2468.	2.5	4
142	Biocompatible Phospholipid Modified Graphene Nanocomposite for Direct Electrochemistry of Redox Enzyme. Acta Chimica Sinica, 2014, 72, 388.	0.5	4
143	Gold Nanocluster-Encapsulated Hyperbranched Polyethyleneimine for Selective and Ratiometric Dopamine Analyses by Enhanced Self-Polymerization. Frontiers in Chemistry, 0, 10, .	1.8	4
144	Light-triggered evolution of molecular clusters toward sub-nanoscale heterojunctions with high interface density. Chemical Communications, 2019, 55, 8146-8149.	2.2	2