
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/72014/publications.pdf Version: 2024-02-01



YAN-YAN SONG

| #  | Article                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochemistry Communications, 2007, 9, 981-988.                                                                                                                                      | 4.7  | 477       |
| 2  | Amphiphilic TiO <sub>2</sub> Nanotube Arrays: An Actively Controllable Drug Delivery System. Journal of the American Chemical Society, 2009, 131, 4230-4232.                                                                                                                                             | 13.7 | 399       |
| 3  | Superhydrophobicity of 3D Porous Copper Films Prepared Using the Hydrogen Bubble Dynamic<br>Template. Chemistry of Materials, 2007, 19, 5758-5764.                                                                                                                                                       | 6.7  | 313       |
| 4  | Nonenzymatic Glucose Detection by Using a Three-Dimensionally Ordered, Macroporous Platinum<br>Template. Chemistry - A European Journal, 2005, 11, 2177-2182.                                                                                                                                            | 3.3  | 243       |
| 5  | Defectâ€Rich Nitrogen Doped Co <sub>3</sub> O <sub>4</sub> /C Porous Nanocubes Enable Highâ€Efficiency<br>Bifunctional Oxygen Electrocatalysis. Advanced Functional Materials, 2019, 29, 1902875.                                                                                                        | 14.9 | 233       |
| 6  | Synthesis of Magnetically Separable<br>Ag <sub>3</sub> PO <sub>4</sub> /TiO <sub>2</sub> /Fe <sub>3</sub> O <sub>4</sub> Heterostructure<br>with Enhanced Photocatalytic Performance under Visible Light for Photoinactivation of Bacteria. ACS<br>Applied Materials & Interfaces, 2014, 6, 15122-15131. | 8.0  | 197       |
| 7  | Fine-tunable Ni@porous silica core–shell nanocatalysts: Synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas. Journal of Catalysis, 2012, 288, 54-64.                                                                                                         | 6.2  | 144       |
| 8  | Facile Method To Fabricate a Large-Scale Superhydrophobic Surface by Galvanic Cell Reaction.<br>Chemistry of Materials, 2006, 18, 1365-1368.                                                                                                                                                             | 6.7  | 138       |
| 9  | Semimetallic TiO <sub>2</sub> Nanotubes. Angewandte Chemie - International Edition, 2009, 48, 7236-7239.                                                                                                                                                                                                 | 13.8 | 133       |
| 10 | Multistage Coloring Electrochromic Device Based on TiO <sub>2</sub> Nanotube Arrays Modified with WO <sub>3</sub> Nanoparticles. Advanced Functional Materials, 2011, 21, 1941-1946.                                                                                                                     | 14.9 | 123       |
| 11 | Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: A refreshable platform for methanol electrooxidation. Electrochemistry Communications, 2011, 13, 290-293.                                                                                                                             | 4.7  | 114       |
| 12 | Voltageâ€induced Payload Release and Wettability Control on TiO <sub>2</sub> and TiO <sub>2</sub><br>Nanotubes. Angewandte Chemie - International Edition, 2010, 49, 351-354.                                                                                                                            | 13.8 | 110       |
| 13 | Insight of MOF Environment-Dependent Enzyme Activity via MOFs-in-Nanochannels Configuration. ACS<br>Catalysis, 2020, 10, 5949-5958.                                                                                                                                                                      | 11.2 | 102       |
| 14 | Optimized monolayer grafting of 3-aminopropyltriethoxysilane onto amorphous, anatase and rutile<br>TiO2. Surface Science, 2010, 604, 346-353.                                                                                                                                                            | 1.9  | 100       |
| 15 | Co <sub>3</sub> O <sub>4</sub> -doped Co/CoFe nanoparticles encapsulated in carbon shells as<br>bifunctional electrocatalysts for rechargeable Zn–Air batteries. Journal of Materials Chemistry A,<br>2018, 6, 3730-3737.                                                                                | 10.3 | 98        |
| 16 | Modulated TiO2 nanotube stacks and their use in interference sensors. Electrochemistry Communications, 2010, 12, 579-582.                                                                                                                                                                                | 4.7  | 95        |
| 17 | Visibleâ€Lightâ€Triggered Drug Release from TiO <sub>2</sub> Nanotube Arrays: A Controllable<br>Antibacterial Platform. Angewandte Chemie - International Edition, 2016, 55, 593-597.                                                                                                                    | 13.8 | 94        |
| 18 | Upconversion Nanoparticle-Assisted Payload Delivery from TiO <sub>2</sub> under Near-Infrared Light<br>Irradiation for Bacterial Inactivation. ACS Nano, 2020, 14, 337-346.                                                                                                                              | 14.6 | 87        |

YAN-YAN SONG

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Co <sub>4</sub> N Nanowires: Noble-Metal-Free Peroxidase Mimetic with Excellent Salt- and<br>Temperature-Resistant Abilities. ACS Applied Materials & Interfaces, 2017, 9, 29881-29888.                               | 8.0  | 86        |
| 20 | TiO <sub>2</sub> Nano Test Tubes as a Selfâ€Cleaning Platform for High‣ensitivity Immunoassays. Small, 2010, 6, 1180-1184.                                                                                            | 10.0 | 78        |
| 21 | Electrochromic-Tuned Plasmonics for Photothermal Sterile Window. ACS Nano, 2018, 12, 6895-6903.                                                                                                                       | 14.6 | 76        |
| 22 | Core–shell structured microcapsular-like Ru@SiO2 reactor for efficient generation of COx-free<br>hydrogen through ammonia decomposition. Chemical Communications, 2010, 46, 5298.                                     | 4.1  | 71        |
| 23 | Graphitic C <sub>3</sub> N <sub>4</sub> ensitized TiO <sub>2</sub> Nanotube Layers: A Visible‣ight<br>Activated Efficient Metalâ€Free Antimicrobial Platform. Chemistry - A European Journal, 2016, 22,<br>3947-3951. | 3.3  | 66        |
| 24 | Semiconductor supported biomimetic superhydrophobic gold surfaces by the galvanic exchange reaction. Surface Science, 2006, 600, 38-42.                                                                               | 1.9  | 65        |
| 25 | Development of Amperometric Glucose Biosensor Based on Prussian Blue Functionlized TiO2<br>Nanotube Arrays. Scientific Reports, 2014, 4, 6891.                                                                        | 3.3  | 65        |
| 26 | TiO[sub 2] Nanotubes: Efficient Suppression of Top Etching during Anodic Growth. Electrochemical and Solid-State Letters, 2009, 12, C17.                                                                              | 2.2  | 63        |
| 27 | Metallic CoO/Co heterostructures stabilized in an ultrathin amorphous carbon shell for<br>high-performance electrochemical supercapacitive behaviour. Journal of Materials Chemistry A, 2019,<br>7, 372-380.          | 10.3 | 60        |
| 28 | Ultrathin CoS 2 shells anchored on Co 3 O 4 nanoneedles for efficient hydrogen evolution electrocatalysis. Journal of Power Sources, 2017, 356, 89-96.                                                                | 7.8  | 56        |
| 29 | Signal-amplified platform for electrochemical immunosensor based on TiO2 nanotube arrays using a<br>HRP tagged antibody-Au nanoparticles as probe. Biosensors and Bioelectronics, 2013, 41, 771-775.                  | 10.1 | 54        |
| 30 | Nickel Hydroxide Nanoparticle Activated Semiâ€metallic TiO <sub>2</sub> Nanotube Arrays for<br>Nonâ€enzymatic Glucose Sensing. Chemistry - A European Journal, 2013, 19, 15530-15534.                                 | 3.3  | 51        |
| 31 | Exploiting Free-Standing p-CuO/n-TiO <sub>2</sub> Nanochannels as a Flexible Gas Sensor with High<br>Sensitivity for H <sub>2</sub> S at Room Temperature. ACS Sensors, 2021, 6, 3387-3397.                           | 7.8  | 51        |
| 32 | Galvanic Deposition of Nanostructured Noble-Metal Films on Silicon. Electrochemical and Solid-State<br>Letters, 2005, 8, C148.                                                                                        | 2.2  | 50        |
| 33 | A niobium oxide with a shear structure and planar defects for high-power lithium ion batteries.<br>Energy and Environmental Science, 2022, 15, 254-264.                                                               | 30.8 | 50        |
| 34 | Boosting the oxygen evolution reaction performance of CoS <sub>2</sub> microspheres by subtle ionic liquid modification. Chemical Communications, 2018, 54, 8765-8768.                                                | 4.1  | 49        |
| 35 | Target-Driven Nanozyme Growth in TiO <sub>2</sub> Nanochannels for Improving Selectivity in Electrochemical Biosensing. Analytical Chemistry, 2020, 92, 10033-10041.                                                  | 6.5  | 49        |
| 36 | Engineering Homochiral MOFs in TiO <sub>2</sub> Nanotubes as Enantioselective<br>Photoelectrochemical Electrode for Chiral Recognition. Analytical Chemistry, 2021, 93, 12067-12074.                                  | 6.5  | 49        |

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Carbon cladded TiO <sub>2</sub> nanotubes: fabrication and use in 3D-RuO <sub>2</sub> based supercapacitors. Chemical Communications, 2015, 51, 7614-7617.                                                                                    | 4.1  | 46        |
| 38 | NIR Light-Driven Photocatalysis on Amphiphilic TiO <sub>2</sub> Nanotubes for Controllable Drug<br>Release. ACS Applied Materials & Interfaces, 2020, 12, 23606-23616.                                                                        | 8.0  | 45        |
| 39 | One-Step to Prepare Self-Organized Nanoporous NiO/TiO2 Layers and its Use in Non-Enzymatic Glucose<br>Sensing. Scientific Reports, 2013, 3, 3323.                                                                                             | 3.3  | 41        |
| 40 | Surface electric field manipulation of the adsorption kinetics and biocatalytic properties of<br>cytochrome c on a 3D macroporous Au electrode. Analytical and Bioanalytical Chemistry, 2008, 390,<br>333-341.                                | 3.7  | 40        |
| 41 | CdS nanocrystals functionalized TiO2 nanotube arrays: Novel electrochemiluminescence platforms for ultrasensitive immunosensors. Electrochemistry Communications, 2012, 16, 44-48.                                                            | 4.7  | 40        |
| 42 | Covalent functionalization of TiO2 nanotube arrays with EGF and BMP-2 for modified behavior towards mesenchymal stem cells. Integrative Biology (United Kingdom), 2011, 3, 927.                                                               | 1.3  | 39        |
| 43 | Engineering large-scaled electrochromic semiconductor films as reproductive SERS substrates for operando investigation at the solid/liquid interfaces. Chinese Chemical Letters, 2022, 33, 5169-5173.                                         | 9.0  | 39        |
| 44 | Biotemplated synthesis of Au nanoparticles–TiO2nanotube junctions for enhanced direct electrochemistry of heme proteins. Chemical Communications, 2013, 49, 774-776.                                                                          | 4.1  | 38        |
| 45 | Nickel–Cobalt Hydrogen Phosphate on Nickel Nitride Supported on Nickel Foam for Alkaline Seawater<br>Electrolysis. ACS Applied Materials & Interfaces, 2022, 14, 22061-22070.                                                                 | 8.0  | 38        |
| 46 | A self-cleaning nonenzymatic glucose detection system based on titania nanotube arrays modified with platinum nanoparticles. Electrochemistry Communications, 2011, 13, 1217-1220.                                                            | 4.7  | 37        |
| 47 | Protein Shell-Encapsulated Pt Clusters as Continuous O <sub>2</sub> -Supplied Biocoats for<br>Photodynamic Therapy in Hypoxic Cancer Cells. ACS Applied Materials & Interfaces, 2019, 11,<br>17215-17225.                                     | 8.0  | 37        |
| 48 | Intracellular Metal–Organic Frameworks: Integrating an All-In-One Semiconductor Electrode Chip<br>for Therapy, Capture, and Quantification of Circulating Tumor Cells. Analytical Chemistry, 2020, 92,<br>13319-13326.                        | 6.5  | 36        |
| 49 | TiO2 nanotubes modified with Au nanoparticles for visible-light enhanced antibacterial and anti-inflammatory capabilities. Journal of Electroanalytical Chemistry, 2019, 842, 66-73.                                                          | 3.8  | 34        |
| 50 | Constructing a photo-enzymatic cascade reaction and its <i>in situ</i> monitoring: enzymes<br>hierarchically trapped in titania meso-porous MOFs as a new photosynthesis platform. Journal of<br>Materials Chemistry A, 2021, 9, 14911-14919. | 10.3 | 32        |
| 51 | Construction of Peroxidase-like Metal–Organic Frameworks in TiO <sub>2</sub> Nanochannels:<br>Robust Free-Standing Membranes for Diverse Target Sensing. Analytical Chemistry, 2021, 93, 9486-9494.                                           | 6.5  | 32        |
| 52 | Near Infrared Light-Driven Photothermal Effect on Homochiral Au/TiO <sub>2</sub> Nanotube Arrays<br>for Enantioselective Desorption. Analytical Chemistry, 2022, 94, 588-592.                                                                 | 6.5  | 32        |
| 53 | Signal-On Electrochemiluminescence of Self-Ordered Molybdenum Oxynitride Nanotube Arrays for<br>Label-Free Cytosensing. Analytical Chemistry, 2018, 90, 10858-10864.                                                                          | 6.5  | 31        |
| 54 | Modulating Solar Energy Harvesting on TiO <sub>2</sub> Nanochannel Membranes by Plasmonic<br>Nanoparticle Assembly for Desalination of Contaminated Seawater. ACS Applied Nano Materials, 2020,<br>3, 10895-10904.                            | 5.0  | 31        |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Ptâ€Decorated g <sub>3</sub> N <sub>4</sub> /TiO <sub>2</sub> Nanotube Arrays with Enhanced<br>Visibleâ€Light Photocatalytic Activity for H <sub>2</sub> Evolution. ChemistryOpen, 2016, 5, 197-200.                                                              | 1.9  | 30        |
| 56 | Biomineralization-Driven Ion Gate in TiO <sub>2</sub> Nanochannel Arrays for Cell H <sub>2</sub> S<br>Sensing. Analytical Chemistry, 2019, 91, 13746-13751.                                                                                                       | 6.5  | 30        |
| 57 | Highly selective amperometric glucose microdevice derived from diffusion layer gap electrode.<br>Biosensors and Bioelectronics, 2008, 23, 892-898.                                                                                                                | 10.1 | 28        |
| 58 | Renewable photoelectrochemical cytosensing platform for rapid capture and detection of circulating tumor cells. Analytica Chimica Acta, 2021, 1142, 1-9.                                                                                                          | 5.4  | 28        |
| 59 | Deployment of MIL-88B(Fe)/TiO <sub>2</sub> Nanotube-Supported Ti Wires as Reusable<br>Electrochemiluminescence Microelectrodes for Noninvasive Sensing of<br>H <sub>2</sub> O <sub>2</sub> from Single Cancer Cells. Analytical Chemistry, 2021, 93, 11312-11320. | 6.5  | 28        |
| 60 | Direct Electron Transfer of Thiol-Derivatized Tetraphenylporphyrin Assembled on Gold Electrodes in an Aqueous Solution. Journal of Physical Chemistry C, 2009, 113, 9359-9367.                                                                                    | 3.1  | 26        |
| 61 | Fabrication of Homochiral Metal–Organic Frameworks in TiO <sub>2</sub> Nanochannels for <i>In<br/>Situ</i> Identification of 3,4-Dihydroxyphenylalanine Enantiomers. Analytical Chemistry, 2021, 93,<br>11515-11524.                                              | 6.5  | 25        |
| 62 | Photoinduced release of active proteins from TiO2 surfaces. Electrochemistry Communications, 2009, 11, 1429-1433.                                                                                                                                                 | 4.7  | 24        |
| 63 | Plasmon-Triggered Hot-Spot Excitation on SERS Substrates for Bacterial Inactivation and in Situ<br>Monitoring. ACS Applied Materials & Interfaces, 2018, 10, 25219-25227.                                                                                         | 8.0  | 24        |
| 64 | Direct access to NiCo-LDH nanosheets by electrochemical-scanning-mediated hydrolysis for photothermally enhanced energy storage capacity. Energy Storage Materials, 2022, 48, 487-496.                                                                            | 18.0 | 24        |
| 65 | Understanding of chiral site-dependent enantioselective identification on a plasmon-free semiconductor based SERS substrate. Chemical Science, 2022, 13, 6550-6557.                                                                                               | 7.4  | 24        |
| 66 | Photosynthesis and characterization of Prussian blue nanocubes on surfaces of TiO2 colloids.<br>Applied Physics Letters, 2006, 88, 053112.                                                                                                                        | 3.3  | 22        |
| 67 | Wireless Battery-Free Generation of Electric Fields on One-Dimensional Asymmetric Au/ZnO Nanorods<br>for Enhanced Raman Sensing. Analytical Chemistry, 2021, 93, 9286-9295.                                                                                       | 6.5  | 22        |
| 68 | Carbon-Decorated TiO <sub>2</sub> Nanotube Membranes: A Renewable Nanofilter for<br>Charge-Selective Enrichment of Proteins. ACS Applied Materials & Interfaces, 2016, 8, 21997-22004.                                                                            | 8.0  | 21        |
| 69 | Photocatalytic synthesis and synergistic effect of Prussian blue-decorated Au nanoparticles/TiO2 nanotube arrays for H2O2 amperometric sensing. Electrochimica Acta, 2014, 125, 530-535.                                                                          | 5.2  | 20        |
| 70 | Engineering tailorable TiO2 nanotubes for NIR-controlled drug delivery. Nano Research, 2021, 14, 4046.                                                                                                                                                            | 10.4 | 20        |
| 71 | MOF-Derived Fe-Doped Ni@NC Hierarchical Hollow Microspheres as an Efficient Electrocatalyst for Alkaline Oxygen Evolution Reaction. ACS Omega, 2021, 6, 11077-11082.                                                                                              | 3.5  | 20        |
| 72 | Insight of the Influence of Magnetic-Field Direction on Magneto-Plasmonic Interfaces for Tuning<br>Photocatalytical Performance of Semiconductors. Journal of Physical Chemistry Letters, 2020, 11,<br>9931-9937.                                                 | 4.6  | 20        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Facile method to synthesize a carbon layer embedded into titanium dioxide nanotubes with metal oxide decoration for electrochemical applications. Journal of Materials Chemistry A, 2015, 3, 23754-23759.                       | 10.3 | 19        |
| 74 | Introducing graphitic carbon nitride nanosheets as supersandwich-type assembly on porous electrode<br>for ultrasensitive electrochemiluminescence immunosensing. Analytica Chimica Acta, 2020, 1097, 62-70.                     | 5.4  | 18        |
| 75 | In Situ Monitoring of the "Point Discharge―Induced Antibacterial Process by the Onsite Formation of<br>a Raman Probe. Analytical Chemistry, 2020, 92, 2323-2330.                                                                | 6.5  | 18        |
| 76 | Enhanced Electrochemical N <sub>2</sub> Reduction to NH <sub>3</sub> on Reduced Graphene Oxide by Tannic Acid Modification. ACS Sustainable Chemistry and Engineering, 2019, 7, 14368-14372.                                    | 6.7  | 17        |
| 77 | Surface-charge regulated TiO2 nanotube arrays as scaffold for constructing binder-free high-performance supercapacitor. Applied Surface Science, 2021, 567, 150832.                                                             | 6.1  | 17        |
| 78 | Nitrogen-doped carbon nanospheres derived from cocoon silk as metal-free electrocatalyst for glucose sensing. Talanta, 2015, 144, 1245-1251.                                                                                    | 5.5  | 15        |
| 79 | A portable dual-mode sensor based on a TiO <sub>2</sub> nanotube membrane for the evaluation of telomerase activity. Chemical Communications, 2019, 55, 10571-10574.                                                            | 4.1  | 15        |
| 80 | Designing ultrafine PdCo alloys in mesoporous silica nanospheres with peroxidase-like activity and catalase-like activity. Journal of Materials Chemistry B, 2021, 9, 2016-2024.                                                | 5.8  | 15        |
| 81 | Nature-inspired mineralization of a wood membrane as a sensitive electrochemical sensing device for <i>in situ</i> recognition of chiral molecules. Green Chemistry, 2021, 23, 8685-8693.                                       | 9.0  | 15        |
| 82 | Tuning the surface segregation composition of a PdCo alloy by the atmosphere for increasing electrocatalytic activity. Sustainable Energy and Fuels, 2020, 4, 380-386.                                                          | 4.9  | 13        |
| 83 | A Nonstoichiometric Niobium Oxide/Graphite Composite for Fastâ€Charge Lithiumâ€lon Batteries. Small,<br>2022, 18, .                                                                                                             | 10.0 | 13        |
| 84 | Asymmetric coupling of Au nanospheres on TiO <sub>2</sub> nanochannel membranes for NIR-gated artificial ionic nanochannels. Chemical Communications, 2019, 55, 14625-14628.                                                    | 4.1  | 12        |
| 85 | Needle-like Co3O4 nanoarrays as a dual-responsive amperometric sensor for enzyme-free detection of glucose and phosphate anion. Journal of Electroanalytical Chemistry, 2021, 897, 115605.                                      | 3.8  | 12        |
| 86 | Engineering hierarchical FeS2/TiO2 nanotubes on Ti mesh as a tailorable flow-through catalyst belt<br>for all-day-active degradation of organic pollutants and pathogens. Journal of Hazardous Materials,<br>2022, 438, 129501. | 12.4 | 12        |
| 87 | Electrochemical protonation/de-protonation of titania nanotubes decorated with silver phosphate crystals: An enhanced electrochromic color contrast. Optical Materials, 2015, 40, 112-117.                                      | 3.6  | 10        |
| 88 | Protein-mediated synthesis of antibacterial silver nanoparticles deposited on titanium dioxide<br>nanotube arrays. Mikrochimica Acta, 2012, 177, 129-135.                                                                       | 5.0  | 9         |
| 89 | Asymmetrically coating Pt nanoparticles on magnetic silica nanospheres for target cell capture and therapy. Mikrochimica Acta, 2021, 188, 361.                                                                                  | 5.0  | 9         |
| 90 | Atomic layer deposition of ultra-trace Pt catalysts onto a titanium nitride nanowire array for electrocatalytic methanol oxidation. Chemical Communications, 2019, 55, 13283-13286.                                             | 4.1  | 8         |

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Rapid Capture and Photocatalytic Inactivation of Target Cells from Whole Blood by Rotating Janus<br>Nanotubes. ACS Applied Materials & Interfaces, 2021, 13, 12972-12981.                                                                                            | 8.0 | 8         |
| 92  | Nanoarchitectonics of a MOF-in-Nanochannel (HKUST-1/TiO <sub>2</sub> ) Membrane for Multitarget<br>Selective Enrichment and Staged Recovery. ACS Applied Materials & Interfaces, 2022, 14,<br>22006-22015.                                                           | 8.0 | 8         |
| 93  | Diffusion layer based probe-in-tube microdevice for selective analysis of electroactive species.<br>Electrochemistry Communications, 2007, 9, 1553-1557.                                                                                                             | 4.7 | 7         |
| 94  | Pt nanoparticle-coupled WO2.72 nanoplates as multi-enzyme mimetics for colorimetric detection and radical elimination. Analytical and Bioanalytical Chemistry, 2020, 412, 521-530.                                                                                   | 3.7 | 7         |
| 95  | Boosting the Raman signal on a semiconductor-nanotube membrane for reporting photocatalytic reactions on site. Chemical Communications, 2020, 56, 10333-10336.                                                                                                       | 4.1 | 7         |
| 96  | Boosting the Local Temperature of Hybrid Prussian Blue/NiO Nanotubes by Solar Light: Effect on Energy Storage. ACS Sustainable Chemistry and Engineering, 2021, 9, 11837-11846.                                                                                      | 6.7 | 7         |
| 97  | Anion-exchange reactions: facile and general access to sensitive photoelectrochemical platforms for biomarker immunosensing. Journal of Materials Chemistry B, 2017, 5, 5145-5151.                                                                                   | 5.8 | 7         |
| 98  | Signal Amplification Strategy Based on TiO <sub>2</sub> â€Nanotube Layers and Nanobeads Carrying<br>Quantum Dots for Electrochemiluminescent Immunosensors. ChemistryOpen, 2013, 2, 93-98.                                                                           | 1.9 | 6         |
| 99  | Atomic Layer Deposition of NiO on Selfâ€Supported Co <sub>3</sub> O <sub>4</sub> Nanoneedle Array for Electrocatalytic Methanol Oxidation Reaction. Energy Technology, 2021, 9, 2100112.                                                                             | 3.8 | 6         |
| 100 | Simultaneous enrichment and separation based on ion concentration polarization effect on a paper based analytical device. Analytica Chimica Acta, 2022, 1208, 339844.                                                                                                | 5.4 | 6         |
| 101 | Filling foaming agent into stacked layers: Rapid synthesis of graphitic carbon nitride nanosheets<br>decorated with ultrafined MXY (Xâ€̃=â€̃O, S) nanoparticles for enhanced photoresponsive abilities.<br>Journal of Electroanalytical Chemistry, 2018, 826, 52-59. | 3.8 | 5         |
| 102 | Porous anodic alumina: Amphiphilic and magnetically guidable micro-rafts. Electrochemistry Communications, 2011, 13, 934-937.                                                                                                                                        | 4.7 | 3         |
| 103 | Post-infiltration of a multilayered carbon nanofilm with MnO 2 at low loadings for improved capacitive properties. Journal of Power Sources, 2017, 354, 108-115.                                                                                                     | 7.8 | 3         |
| 104 | An anion exchange reaction: an effective approach to prepare alloyed Co–Fe bimetallic disulfide for improving the electrocatalytic activity. Chemical Communications, 2019, 55, 7615-7618.                                                                           | 4.1 | 3         |
| 105 | "Black body―effect of carbon nanospheres: A broadband energy acceptor in constructing<br>electrochemiluminescence resonance energy transfer for biosensing. Journal of Electroanalytical<br>Chemistry, 2020, 877, 114727.                                            | 3.8 | 3         |
| 106 | Development of a pulse-induced electrochemical biosensor based on gluconamide for Gram-negative bacteria detection. Mikrochimica Acta, 2021, 188, 399.                                                                                                               | 5.0 | 3         |
| 107 | Construction of Bi-component CoNi nanosheet coated TiO2 nanotube arrays for photocatalysis-assisted poisoning tolerance toward methanol oxidation reaction. Catalysis Today, 2022, 403, 28-38.                                                                       | 4.4 | 3         |
| 108 | Biocompatible Functional Nanomaterials: Synthesis, Properties, and Applications. Journal of Nanomaterials, 2013, 2013, 1-1.                                                                                                                                          | 2.7 | 2         |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | TiO2 Nano-test tubes as a solid visual platform for sensitive Pb2+ ion detection based on a<br>fluorescence resonance energy transfer (FRET) process. Analytical and Bioanalytical Chemistry, 2021,<br>413, 3583-3593. | 3.7 | 1         |
| 110 | Facile synthesis of Pt/TiO <inf>2</inf> nanotube arrays: A reusable platform for direct methanol fuel cell. , 2011, , .                                                                                                |     | 0         |
| 111 | Ultrasensitive Immunosensor Based on Electrogenerated Chemiluminescence Quenching of CdS/TiO2<br>Nanotube Arrays for Detection of Antigen. , 2012, , .                                                                 |     | 0         |
| 112 | Dual Signal Amplification Based on TiO2 Nanotube Layers and CdTe Quantum Dots for Electrochemiluminescent Immunosensing. , 2013, , .                                                                                   |     | 0         |
| 113 | Ultrathin Carbon Shell Entrapped Metal Co/Coo for High-Performance Electrochemical<br>Supercapacitor. ECS Meeting Abstracts, 2019, , .                                                                                 | 0.0 | 0         |