Fabrice Wattebled

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7201097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facilitating gene editing in potato: a Single-Nucleotide Polymorphism (SNP) map of the Solanum tuberosum L. cv. Desiree genome. Scientific Reports, 2020, 10, 2045.	1.6	46
2	PII1: a protein involved in starch initiation that determines granule number and size in Arabidopsis chloroplast. New Phytologist, 2019, 221, 356-370.	3.5	31
3	NegFluo, a Fast and Efficient Method to Determine Starch Granule Size and Morphology In Situ in Plant Chloroplasts. Frontiers in Plant Science, 2019, 10, 1075.	1.7	5
4	Deletion of BSG1 in Chlamydomonas reinhardtii leads to abnormal starch granule size and morphology. Scientific Reports, 2019, 9, 1990.	1.6	16
5	Functions of maize genes encoding pyruvate phosphate dikinase in developing endosperm. Proceedings of the United States of America, 2018, 115, E24-E33.	3.3	35
6	The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation. Journal of Experimental Botany, 2017, 68, 5177-5189.	2.4	16
7	Expression of <i><scp><i>Escherichia coli</i></scp></i> glycogen branching enzyme in an <i>Arabidopsis</i> mutant devoid of endogenous starch branching enzymes induces the synthesis of starchâ€ike polyglucans. Plant, Cell and Environment, 2016, 39, 1432-1447.	2.8	15
8	Starch Biosynthesis in Leaves and Its Regulation. , 2015, , 211-237.		5
9	From dusk till dawn: the Arabidopsis thaliana sugar starving responsive network. Frontiers in Plant Science, 2014, 5, 482.	1.7	10
10	Function of isoamylaseâ€ŧype starch debranching enzymes <scp>ISA</scp> 1 and <scp>ISA</scp> 2 in the <i><scp>Z</scp>ea mays</i> leaf. New Phytologist, 2013, 200, 1009-1021.	3.5	31
11	Distinct Functional Properties of Isoamylase-Type Starch Debranching Enzymes in Monocot and Dicot Leaves. Plant Physiology, 2013, 163, 1363-1375.	2.3	32
12	Identification of a novel α-L-arabinofuranosidase gene associated with mealiness in apple. Journal of Experimental Botany, 2011, 62, 4309-4321.	2.4	52
13	Integrated functions among multiple starch synthases determine both amylopectin chain length and branch linkage location in Arabidopsis leaf starch. Journal of Experimental Botany, 2011, 62, 4547-4559.	2.4	76
14	Further Evidence for the Mandatory Nature of Polysaccharide Debranching for the Aggregation of Semicrystalline Starch and for Overlapping Functions of Debranching Enzymes in Arabidopsis Leaves. Plant Physiology, 2008, 148, 1309-1323.	2.3	80
15	The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant Journal, 2007, 49, 492-504.	2.8	255
16	Plastidial phosphorylase is required for normal starch synthesis inChlamydomonas reinhardtii. Plant Journal, 2006, 48, 274-285.	2.8	105
17	Circadian Clock Regulation of Starch Metabolism Establishes GBSSI as a Major Contributor to Amylopectin Synthesis in Chlamydomonas reinhardtii Â. Plant Physiology, 2006, 142, 305-317.	2.3	133
18	Mutants of Arabidopsis Lacking Starch Branching Enzyme II Substitute Plastidial Starch Synthesis by Cytoplasmic Maltose Accumulation. Plant Cell, 2006, 18, 2694-2709.	3.1	100

FABRICE WATTEBLED

#	Article	IF	CITATIONS
19	Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves. Plant Journal, 2005, 43, 398-412.	2.8	163
20	Mutants of Arabidopsis Lacking a Chloroplastic Isoamylase Accumulate Phytoglycogen and an Abnormal Form of Amylopectin. Plant Physiology, 2005, 138, 184-195.	2.3	169
21	Starch Division and Partitioning. A Mechanism for Granule Propagation and Maintenance in the Picophytoplanktonic Green Alga Ostreococcus tauri. Plant Physiology, 2004, 136, 3333-3340.	2.3	80
22	STA11, a Chlamydomonas reinhardtii Locus Required for Normal Starch Granule Biogenesis, Encodes Disproportionating Enzyme. Further Evidence for a Function of α-1,4 Glucanotransferases during Starch Granule Biosynthesis in Green Algae. Plant Physiology, 2003, 132, 137-145.	2.3	47
23	Granule-bound starch synthase I. FEBS Journal, 2002, 269, 3810-3820.	0.2	50
24	Biochemical Characterization of Wild-Type and Mutant Isoamylases of Chlamydomonas reinhardtii Supports a Function of the Multimeric Enzyme Organization in Amylopectin Maturation. Plant Physiology, 2001, 125, 1723-1731.	2.3	54
25	Biochemical Characterization of the Chlamydomonas reinhardtii α-1,4 Glucanotransferase Supports a Direct Function in Amylopectin Biosynthesis1. Plant Physiology, 1999, 120, 1005-1014.	2.3	80