Maryline Moreno-Couranjou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7200964/publications.pdf

Version: 2024-02-01

18	346	13	18
papers	citations	h-index	g-index
19	19	19	419 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Atmospheric Pressure Pulsed Plasma Copolymerisation of Maleic Anhydride and Vinyltrimethoxysilane: Influence of Electrical Parameters on Chemistry, Morphology and Deposition Rate of the Coatings. Plasma Processes and Polymers, 2012, 9, 435-445.	3.0	51
2	Robust bio-inspired antibacterial surfaces based on the covalent binding of peptides on functional atmospheric plasma thin films. Journal of Materials Chemistry B, 2014, 2, 5168.	5.8	37
3	Anti-biofouling and antibacterial surfaces <i>via</i> a multicomponent coating deposited from an up-scalable atmospheric-pressure plasma-assisted CVD process. Journal of Materials Chemistry B, 2018, 6, 614-623.	5.8	36
4	Atmospheric-Pressure Plasma Deposited Epoxy-Rich Thin Films as Platforms for Biomolecule Immobilization-Application for Anti-Biofouling and Xenobiotic-Degrading Surfaces. Plasma Processes and Polymers, 2015, 12, 1208-1219.	3.0	33
5	Fast Atmospheric Plasma Deposition of Bioâ€Inspired Catechol/Quinoneâ€Rich Nanolayers to Immobilize NDMâ€1 Enzymes for Water Treatment. Advanced Materials Interfaces, 2016, 3, 1500520.	3.7	30
6	Liquidâ€Assisted Plasmaâ€Enhanced Chemical Vapor Deposition of Catechol and Quinoneâ€Functionalized Coatings: Insights into the Surface Chemistry and Morphology. Plasma Processes and Polymers, 2016, 13, 843-856.	3.0	23
7	Atmospheric Aerosol Assisted Pulsed Plasma Polymerization: An Environmentally Friendly Technique for Tunable Catechol-Bearing Thin Films. Frontiers in Chemistry, 2019, 7, 183.	3.6	20
8	Surface Modification of Natural Vulcanized Rubbers by Atmospheric Dielectric Barrier Discharges Plasma Treatments. Plasma Processes and Polymers, 2009, 6, S397-S400.	3.0	17
9	Atmospheric Plasma Deposition of Methacrylate Layers Containing Catechol/Quinone Groups: An Alternative to Polydopamine Bioconjugation for Biomedical Applications. Advanced Healthcare Materials, 2018, 7, e1701059.	7.6	17
10	Optimization of Carboxyl Surface Functionalization by MA-VTMS Copolymerization Using Atmospheric Pressure Plasma DBD: Influence of the Carrier Gas. Plasma Processes and Polymers, 2010, 7, 403-410.	3.0	16
11	Thermoresponsive Water-Soluble Polymer Layers and Water-Stable Copolymer Layers Synthesized by Atmospheric Plasma Initiated Chemical Vapor Deposition. ACS Applied Materials & Emp; Interfaces, 2019, 11, 1335-1343.	8.0	15
12	Anti-biofouling activity of Ranaspumin-2 bio-surfactant immobilized on catechol-functional PMMA thin layers prepared by atmospheric plasma deposition. Colloids and Surfaces B: Biointerfaces, 2019, 178, 120-128.	5.0	14
13	Selfâ€Defensive Coating for Antibiotics Degradation â€" < /b > Atmospheric Pressure Chemical Vapor Deposition of Functional and Conformal Coatings for the Immobilization of Enzymes. Advanced Materials Interfaces, 2015, 2, 1500253.	3.7	13
14	Plasma Deposition of Thermoâ€Responsive Thin Films from Nâ€Vinylcaprolactam. Plasma Processes and Polymers, 2014, 11, 816-821.	3.0	9
15	Atmospheric pulsed plasma copolymerization of acrylic monomers: Kinetics, chemistry, and applications. Plasma Processes and Polymers, 2020, 17, 1900187.	3.0	7
16	Controlled coâ€immobilization of biomolecules on quinoneâ€bearing plasma polymer films for multifunctional biomaterial surfaces. Plasma Processes and Polymers, 2020, 17, 2000090.	3.0	4
17	Insights into switchable thermoresponsive copolymer layers by atmospheric pressure plasmaâ€initiated chemical vapour deposition. Plasma Processes and Polymers, 2020, 17, 1900172.	3.0	2
18	Atmospheric plasma deposition of bioinspired catechol-rich polymers: a promising route for the simple construction of redox-active thin films. Materials Advances, 2021, 2, 1248-1252.	5.4	2