Shinji Yasuhira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7200866/publications.pdf

Version: 2024-02-01

1 5	217	932766	1058022
15	217	10	14
papers	citations	h-index	g-index
18	18	18	571
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	DUSP4 Inactivation Leads to Reduced Extracellular Signal‒Regulated Kinase Activity through Upregulation of DUSP6 in Melanoma Cells. Journal of Investigative Dermatology, 2022, 142, 2499-2507.e6.	0.3	1
2	Involvement of C-terminal truncation mutation of kinesin-5 in resistance to kinesin-5 inhibitor. PLoS ONE, 2018, 13, e0209296.	1.1	5
3	Distinct Profiles of CD163-Positive Macrophages in Idiopathic Interstitial Pneumonias. Journal of Immunology Research, 2018, 2018, 1-8.	0.9	18
4	Bcl-2/Bcl-xL inhibitor ABT-737 sensitizes pancreatic ductal adenocarcinoma to paclitaxel-induced cell death. Oncology Letters, 2017, 14, 903-908.	0.8	19
5	Carnosic acid, an inducer of NAD(P)H quinone oxidoreductase 1, enhances the cytotoxicity of $\hat{I}^2\hat{a}$ \in lapachone in melanoma cell lines. Oncology Letters, 2017, 15, 2393-2400.	0.8	10
6	Characterization of PAX9 variant P20L identified in a Japanese family with tooth agenesis. PLoS ONE, 2017, 12, e0186260.	1.1	11
7	Hyaluronic acid enhances cell migration and invasion via the YAP1/TAZ-RHAMM axis in malignant pleural mesothelioma. Oncotarget, 2017, 8, 93729-93740.	0.8	24
8	<scp>NAD</scp> (P)H dehydrogenase, quinone 1 (<scp>NQO</scp> 1), protects melaninâ€producing cells from cytotoxicity of rhododendrol. Pigment Cell and Melanoma Research, 2016, 29, 309-316.	1.5	16
9	SNF2H interacts with XRCC1 and is involved in repair of H2O2-induced DNA damage. DNA Repair, 2016, 43, 69-77.	1.3	8
10	Paclitaxel-induced aberrant mitosis and mitotic slippage efficiently lead to proliferative death irrespective of canonical apoptosis and p53. Cell Cycle, 2016, 15, 3268-3277.	1.3	24
11	NAD(P)H:Quinone Oxidoreductase-1 Expression Sensitizes Malignant Melanoma Cells to the HSP90 Inhibitor 17-AAG. PLoS ONE, 2016, 11, e0153181.	1.1	17
12	Nucleus accumbens associated 1 is recruited within the promyelocytic leukemia nuclear body through $\langle scp \rangle SUMO \langle lscp \rangle$ modification. Cancer Science, 2015, 106, 848-856.	1.7	11
13	A Somatic Mutation of the KEAP1 Gene in Malignant Melanoma Is Involved in Aberrant NRF2 Activation and an Increase in Intrinsic Drug Resistance. Journal of Investigative Dermatology, 2014, 134, 553-556.	0.3	29
14	<scp>BCL</scp> 2 and <scp>BCL</scp> xL are key determinants of resistance to antitubulin chemotherapeutics in melanoma cells. Experimental Dermatology, 2013, 22, 518-523.	1.4	21
15	Sensor and effector kinases in DNA damage checkpoint regulate capacity for homologous recombination repair of fission yeast in G2 phase. DNA Repair, 2012, 11, 666-675.	1.3	3