Jhillu Singh Yadav

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7200684/publications.pdf

Version: 2024-02-01

304743 377865 127 1,847 22 34 citations h-index g-index papers 129 129 129 1562 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Vanillin containing 9H-fluoren sulfone scaffolds: Synthesis, biological evaluation and molecular docking study. Results in Chemistry, 2022, 4, 100269.	2.0	4
2	Towards the total synthesis of metacridamides A and B. Tetrahedron Letters, 2022, 91, 153640.	1.4	1
3	Synthetic Approaches toward the Synthesis of Brivaracetam: An Antiepileptic Drug. ACS Omega, 2022, 7, 2486-2503.	3.5	10
4	Review of Synthetic Approaches toward the Synthesis of Cariprazine, an Antipsychotic Drug. Organic Process Research and Development, 2022, 26, 493-507.	2.7	4
5	Desymmetrisation of <i>meso</i> â€2,4â€Dimethylâ€8â€oxabicyclo[3.2.1]â€octâ€6â€eneâ€3â€ol and its Applica Natural Product Syntheses. Chemical Record, 2022, 22, .	ation in 5.8	O
6	Synthetic Applications of Prins Cyclization in Natural Product Syntheses. Chemical Record, 2022, 22, e202200044.	5.8	4
7	Zn Mediated Urea Bond Formation: A Novel and Convenient Method. ChemistrySelect, 2022, 7, .	1.5	5
8	Enantioselective epoxidation by the chiral auxiliary approach: Asymmetric total synthesis of (+)â€Ambrisentan. Journal of Heterocyclic Chemistry, 2021, 58, 942-946.	2.6	3
9	A Review on Synthetic Advances toward the Synthesis of Apremilast, an Anti-inflammatory Drug. Organic Process Research and Development, 2021, 25, 1512-1523.	2.7	17
10	Concise total synthesis of antiarrhythmic drug dronedarone via a conjugate addition followed intramolecular heck cyclization. Journal of Heterocyclic Chemistry, 2021, 58, 1861-1866.	2.6	3
11	Total Synthesis and Structural Revision of Greensporone F and Dechlorogreensporone F. Journal of Organic Chemistry, 2020, 85, 12418-12429.	3.2	7
12	Stereoselective Total Synthesis of (â€)â€Ebelactone A. ChemistrySelect, 2020, 5, 2763-2766.	1.5	3
13	Stereoselective total synthesis of (â^')-galantinic acid and 1-deoxy-5-hydroxysphingolipids via prins cyclization. Tetrahedron Letters, 2020, 61, 152149.	1.4	4
14	General Asymmetric Synthetic Strategy for the αâ€Alkylated 2,5,6â€Trisubstituted Pyran of Indanomycin and Related Natural Products. European Journal of Organic Chemistry, 2020, 2020, 1947-1955.	2.4	2
15	Synthesis of chiral propargyl alcohols following the base-induced elimination protocol: application in the total synthesis of natural products. New Journal of Chemistry, 2020, 44, 4972-4986.	2.8	3
16	Stereoselective Synthesis of the C1–C16 Fragment of the Purported Structure of Formosalide B. ACS Omega, 2020, 5, 10217-10224.	3.5	5
17	Metal free montmorillonite KSF clay catalyzed practical synthesis of benzoxazoles and benzothiazoles under aerobic conditions. Synthetic Communications, 2019, 49, 3335-3342.	2.1	4
18	Progress towards the Synthesis of (â€)â€Ushikulide A: Synthesis of C1â€C15 Aliphatic and C17â€C31 Spiroketal Fragments by an Aldol Approach. ChemistrySelect, 2019, 4, 4726-4730.	1.5	0

#	Article	IF	CITATIONS
19	Studies towards the Synthesis of Aldgamycin – M. ChemistrySelect, 2019, 4, 3002-3005.	1.5	8
20	Studies towards the Synthesis of Thermolideâ€"6′. ChemistrySelect, 2018, 3, 1000-1003.	1.5	4
21	Stereoselective Total Syntheses of Acutifolone A, Bisacutifolone A and B, Pinguisenol, and Isonaviculol. ACS Omega, 2018, 3, 636-647.	3.5	8
22	Studies towards the total synthesis of Phostriecin. Tetrahedron Letters, 2018, 59, 454-456.	1.4	6
23	Studies towards the Synthesis of Lepranthin. ChemistrySelect, 2018, 3, 1024-1026.	1.5	1
24	Studies towards the Total Synthesis of Aspergillideâ€B. ChemistrySelect, 2018, 3, 3391-3393.	1.5	3
25	Total synthesis of cytotoxic pyranone B. Synthetic Communications, 2018, 48, 3133-3138.	2.1	3
26	Studies towards the Synthesis of Portentol. ChemistrySelect, 2018, 3, 11316-11319.	1.5	1
27	Formal synthesis of Pellasoren – A. Tetrahedron Letters, 2018, 59, 4209-4212.	1.4	4
28	Stereoselective synthesis of C12–C21 common fragment of thermolides 1–5. Tetrahedron Letters, 2018, 59, 2828-2830.	1.4	3
29	Studies Towards the Synthesis of Stereoisomer of Acremolide B. ChemistrySelect, 2017, 2, 1850-1853.	1.5	0
30	An Enantioselective Approach to Pinguisane Sesquiterpenes: Total Synthesis of (–)â€Pinguisenol and (–)â€Isonaviculol. European Journal of Organic Chemistry, 2017, 2017, 2824-2830.	2.4	4
31	First Stereoselective Synthesis of (6R,7R,8S)-8-Chlorogoniodiol. Synthesis, 2017, 49, 2483-2487.	2.3	7
32	Stereoselective Total Synthesis of (S)-Stigmolone: A Fruiting-Body-Inducing Pheromone. Synthesis, 2017, 49, 1702-1706.	2.3	0
33	Total Synthesis and Stereochemical Revision of 4,8-Dihydroxy-3,4-dihydrovernoniyne. Organic Letters, 2017, 19, 4167-4170.	4.6	16
34	Stereoselective Synthesis of the C(1)Â-ÂC(28) Fragment of Amphidinol 3. Helvetica Chimica Acta, 2016, 99, 436-446.	1.6	14
35	Stereoselective Total Synthesis of Cryptomoscatone F1. Synthesis, 2016, 48, 1561-1567.	2.3	10
36	An Efficient Stereoselective Synthesis of Key Fragments of Elaiophylin. Helvetica Chimica Acta, 2016, 99, 506-512.	1.6	3

#	Article	IF	Citations
37	Total Synthesis of a Diacetonide Derivative of Thuggacin A. Journal of Organic Chemistry, 2016, 81, 1786-1797.	3.2	21
38	Stereoselective Total Synthesis of Mangiferaelactone using <scp>D</scp> â€Mannose as a Chiral Pool. Helvetica Chimica Acta, 2015, 98, 1395-1402.	1.6	4
39	Synthesis of the Câ€8–Câ€24 Fragment of Maltepolide C by Using a Tandem DiÂhydroxylation/S _N 2 Cyclization Sequence. European Journal of Organic Chemistry, 2015, 2015, 5266-5274.	2.4	14
40	Stereoselective synthesis of the C21–C29 fragment of (+)-Sorangicin A employing iodocyclization reactions. Tetrahedron Letters, 2015, 56, 5930-5932.	1.4	6
41	Stereoselective Total Synthesis of Rhoiptelol B via Prins Cyclization. Synlett, 2014, 25, 661-664.	1.8	8
42	Iterative Iodocyclization: Total Synthesis of Polyrhacitide B. Synthesis, 2014, 46, 1639-1647.	2.3	17
43	Total Synthesis of 4-Ketoclonostachydiol. Synthesis, 2014, 46, 2347-2352.	2.3	12
44	The First Total Synthesis of Pectinolide F. Synthesis, 2014, 46, 1757-1764.	2.3	5
45	Total Syntheses of Dendrodolides A, B, and E. Asian Journal of Organic Chemistry, 2014, 3, 1210-1216.	2.7	4
46	GaCl3-catalyzed activation of alkynyl glycosides for the synthesis of O-glycosides. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2014, 145, 517-520.	1.8	6
47	Rugulactone derivatives act as inhibitors of NF-κB activation and modulates the transcription of NF-κB dependent genes in MDA-MB-231cells. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1389-1396.	2.2	19
48	Concise total synthesis of botryolide B. RSC Advances, 2014, 4, 8335.	3.6	12
49	Application of oxetane ring opening toward stereoselective synthesis of zincophorin fragment. Tetrahedron Letters, 2014, 55, 3996-3998.	1.4	10
50	Stereoselective synthesis of the C1â \in "C8 and C9â \in "C16 fragments of revised structure of (â $^{\circ}$)-lyngbouilloside. RSC Advances, 2014, 4, 3149-3152.	3.6	9
51	Synthesis of the Spiroketal Fragment of (–)â€Ushikulide A. European Journal of Organic Chemistry, 2014, 2014, 5574-5581.	2.4	12
52	Stereoselective Total Syntheses of Paecilomycins E and F through a Protecting Group Directed Diastereoselective Intermolecular Nozaki–Hiyama–Kishi (NHK) Reaction. European Journal of Organic Chemistry, 2014, 2014, 5023-5032.	2.4	23
53	The First Stereoselective Total Synthesis of (–)‧ynrotolide. European Journal of Organic Chemistry, 2014, 2014, 455-465.	2.4	15
54	A Formal Synthesis of Herboxidiene/GEX1A. European Journal of Organic Chemistry, 2014, 2014, 4389-4397.	2.4	15

#	Article	IF	Citations
55	A New Stereoselective Total Synthesis of Phomonol. Helvetica Chimica Acta, 2014, 97, 1326-1332.	1.6	7
56	Sulfate Encapsulation in Supramolecular Structures from <scp>L</scp> â€Asparagineâ€Derived 2,5â€Diketopiperazine Scaffolds: Anion Binding. European Journal of Organic Chemistry, 2014, 2014, 7015-7022.	2.4	2
57	Stereoselective Total Synthesis of Attenols A and B. European Journal of Organic Chemistry, 2013, 2013, 6317-6324.	2.4	15
58	Total Synthesis of Nhatrangin A. Journal of Organic Chemistry, 2013, 78, 8524-8530.	3.2	17
59	Tandem Ringâ€Closing/Crossâ€Metathesis Approach for the Synthesis of Synargentolide B and Its Stereoisomers. European Journal of Organic Chemistry, 2013, 2013, 4870-4878.	2.4	25
60	A short and facile stereoselective total synthesis of cryptocarya diacetate. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2013, 144, 1583-1587.	1.8	1
61	First Total Synthesis of Pinolide. European Journal of Organic Chemistry, 2013, 2013, 6967-6972.	2.4	6
62	The First Total Synthesis of Synparvolide C. European Journal of Organic Chemistry, 2013, 2013, 6702-6709.	2.4	11
63	Novel iodine catalyzed diastereoselective synthesis of trans-2,6-disubstituted tetrahydro-2H-pyrans: synthesis of C1–C13 fragment of bistramide-A. Tetrahedron Letters, 2013, 54, 5879-5882.	1.4	12
64	An iterative, facile stereoselective synthesis of C1-C11 fragment of borrelidin via enzymatic desymmetrization strategy. RSC Advances, 2013, 3, 4024.	3.6	3
65	Synthesis of the Major Oxepane Segment of Zoapatanol. Helvetica Chimica Acta, 2013, 96, 663-674.	1.6	4
66	Studies directed towards the total synthesis of narbonolide: stereoselective synthesis of the C1–C15 chain. Tetrahedron Letters, 2013, 54, 3329-3331.	1.4	1
67	First stereoselective total synthesis of cryptomoscatone E1 and synthesis of (+)-goniothalamin via an asymmetric acetate aldol reaction. RSC Advances, 2013, 3, 5254.	3.6	13
68	Divergent Enantioselective Total Synthesis of Siphonarienal, Siphonarienone, and Pectinatone. Helvetica Chimica Acta, 2013, 96, 1968-1977.	1.6	12
69	A Concise and Convergent Total Synthesis of Two Novel Cytotoxic Hydroquinones, Lanneaquinol and (<i>R</i>)â€2â€43€Hydroxylanneaquinol. Helvetica Chimica Acta, 2013, 96, 1983-1990.	1.6	4
70	Stereoselective Total Synthesis of Pectinolide H. Synthesis, 2013, 45, 651-654.	2.3	4
71	A Practical Total Synthesis of Both E- and Z-Isomers of Optically Pure (S)-14-Methylhexadec-8-enal (Trogodermal). Synthesis, 2013, 45, 1513-1518.	2.3	5
72	Concise Total Synthesis of Helicascolides A, B, and C. Synthesis, 2013, 45, 1034-1038.	2.3	10

#	Article	IF	Citations
73	Studies toward the Total Synthesis of Carolacton. Synthesis, 2013, 45, 251-259.	2.3	13
74	A Carbohydrate-Based Approach for the Total Synthesis of Xyolide. Synlett, 2013, 24, 2679-2682.	1.8	9
75	Enantioselective Total Synthesis of (+)- and (-)-Vittatalactone. Synthesis, 2012, 2012, 628-634.	2.3	7
76	Stereoselective Synthesis of (4S,6S)-6-Hydroxy-4-undecanolide: A Pheromone of the Giant White Butterfly Idea leuconoe. Synthesis, 2012, 2012, 579-584.	2.3	9
77	First Stereoselective Total Synthesis of Cryptomoscatone D2 and Syntheses of (5R,7S)-Kurzilactone and (+)-Cryptofolione by an Asymmetric Acetate Aldol Approach. Synthesis, 2012, 44, 1365-1372.	2.3	18
78	Palladium Hydroxide Catalyzed Transformation of Primary Propargylic Alcohols into Aldehydes: Application to the Synthesis of the Tetrahydrofuran Core. Synthesis, 2012, 44, 1657-1662.	2.3	5
79	Total Synthesis of (-)-Invictolide. Synthesis, 2012, 44, 2595-2600.	2.3	8
80	Studies Directed Towards the Synthesis of Bryostatin: A Stereoselective Synthesis of the C7–C16 Fragment. Synthesis, 2012, 44, 3077-3084.	2.3	8
81	Towards the Synthesis of (â€")â€Callipeltoside A: Stereoselective Synthesis of the C1â€"C14 Macrolactone Core. European Journal of Organic Chemistry, 2012, 2012, 2062-2071.	2.4	17
82	Synthesis of the C45–C53 tetrahydropyran domain of norhalichondrins and the C14–C22 tetrahydrofuran domain of the halichondrin family. RSC Advances, 2012, 2, 10157.	3.6	11
83	Total synthesis of desacetylumuravumbolide, umuravumbolide and their biological evaluation. RSC Advances, 2012, 2, 7241.	3.6	14
84	General Strategy for Large-Scale Synthesis of (+)-Rivastigmine and (+)-NPS R-568. Synthetic Communications, 2012, 42, 589-598.	2.1	13
85	Protecting Group Free Formal Total Synthesis of the Antitubercular Agent Erogorgiaene. European Journal of Organic Chemistry, 2012, 2012, 2072-2076.	2.4	10
86	Highly Concise and Stereoselective Total Synthesis of (5 <i>R</i> ,7 <i>S</i>)â€Kurzilactone. Helvetica Chimica Acta, 2012, 95, 1226-1230.	1.6	9
87	Stereoselective Total Synthesis of Stagonolide C. Helvetica Chimica Acta, 2012, 95, 227-234.	1.6	13
88	1,4â€Dipolar Cycloaddition Reactions in Ionic Liquids: A Facile Synthesis of 9a <i>H</i> ,15 <i>H</i> à€{1]Benzopyrano[3′,2′: 3,4]pyrido[2,1â€ <i>a</i>]isoquinolines (=9a <i>H</i> ,15 <i>H</i> å€Benzo[<i>a</i>][1]benzopyrano[2,3â€ <i>h</i>]quinolizines). Helvetica Chimica Acta, 2012, 95, 76-86.	1.6	8
89	Synthesis of (4R,6S,7R)-7-hydroxy-4,6-dimethyl-3-nonanone and (3R,5S,6R)-6-hydroxy-3,5-dimethyl-2-octanone. Tetrahedron: Asymmetry, 2011, 22, 2071-2079.	1.8	4
90	Total Synthesis of (+)â€Bourgeanic Acid Utilizing Desymmetrization Strategy. European Journal of Organic Chemistry, 2011, 2011, 58-61.	2.4	19

#	Article	IF	CITATIONS
91	First Stereoselective Total Synthesis and Biological Evaluation of Amphidinin B and Its Analogues. European Journal of Organic Chemistry, 2011, 2011, 696-706.	2.4	16
92	Synthesis of a Focused Chemical Library Based on Derivatives of Embelin, a Natural Product with Proapoptotic and Anticancer Properties. European Journal of Organic Chemistry, 2011, 2011, 1233-1241.	2.4	47
93	Enantioselective Total Synthesis of (+)â€Vittatalactone. European Journal of Organic Chemistry, 2011, 2011, 4603-4608.	2.4	27
94	A practical synthesis of bis(indolyl)methanes employing boric acid. Monatshefte Fýr Chemie, 2010, 141, 1001-1004.	1.8	23
95	Total Synthesis of Aculeatins A and B from <scp>L</scp> â€Malic Acid. Helvetica Chimica Acta, 2010, 93, 2426-2432.	1.6	6
96	Studies Directed Towards the Total Synthesis of (â€")â€Dictyostatin. European Journal of Organic Chemistry, 2010, 2010, 2148-2156.	2.4	27
97	A concise stereoselective formal total synthesis of the cytotoxic macrolide (+)-Neopeltolide via Prins cyclization. Tetrahedron, 2010, 66, 480-487.	1.9	55
98	Towards the total synthesis of etnangien: synthesis of C32–C42 fragment by using a desymmetrization strategy. Tetrahedron: Asymmetry, 2010, 21, 2524-2529.	1.8	7
99	Total synthesis of $(\hat{A}\pm)$ -elegansidiol, $(\hat{A}\pm)$ -farnesiferol B, and $(\hat{A}\pm)$ -farnesiferol D. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3814-3817.	2.2	11
100	$4-\langle i\rangle N\langle i\rangle$ -pyridin-2-yl-benzamide nanotubes compatible with mouse stem cell and oral delivery in $\langle i\rangle$ Drosophila $\langle i\rangle$. Nanotechnology, 2010, 21, 155102.	2.6	13
101	Synthesis of the C1-C13 Subunit of Spirastrellolides A and B by Prins Cyclization. Synthesis, 2010, 2010, 505-509.	2.3	21
102	Stereoselective Total Synthesis of (-)-Colletol by Prins Cyclisation. Synthesis, 2010, 2010, 1473-1478.	2.3	8
103	Convergent Synthesis of Passifloricin A via a Prins Cyclisation and Olefin Cross-Metathesis Approach. Synthesis, 2010, 2010, 3891-3898.	2.3	11
104	Stereoselective Total Synthesis of Obolactone via Prins Cyclization. Synthesis, 2010, 2010, 1171-1175.	2.3	15
105	Stereoselective total synthesis of (+)-strictifolione and (6R)-6-[(4R,6R)-4,6-dihydroxy-10-phenyldec-1-enyl]-5,6-dihydro-2H-pyran-2-one by Prins reaction and olefin cross-metathesis. Tetrahedron: Asymmetry, 2009, 20, 184-191.	1.8	36
106	Total synthesis of the marine polypropionates, siphonarienal, siphonarienone, and pectinatone. Tetrahedron: Asymmetry, 2009, 20, 2205-2210.	1.8	13
107	Production of I (+) lactic acid by Lactobacillus delbrueckii immobilized in functionalized alginate matrices. World Journal of Microbiology and Biotechnology, 2008, 24, 1411-1415.	3.6	15
108	Green protocol for conjugate addition of amines to p-quinones accelerated by water. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2008, 139, 1317-1320.	1.8	27

#	Article	IF	Citations
109	lodine as a mild, efficient, and cost-effective catalyst for the synthesis of thiiranes from oxiranes. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2008, 139, 1363-1367.	1.8	20
110	Three-Component Reaction of Aldose Sugars, Aryl Amines, and 1,3-Diones:  A Novel Synthesis of Annulated Pyrroles. Journal of Organic Chemistry, 2008, 73, 3252-3254.	3.2	17
111	Gold(III) Chloride-Catalyzed Three-Component Reaction: A Facile Synthesis of Alkynyl Derivatives of 1,2-Dihydroquinolines and Isoquinolines. Journal of Organic Chemistry, 2008, 73, 6857-6859.	3.2	59
112	[bmim]PF6/CuBr: a novel and recyclable catalytic system for the synthesis of propargyl amines. New Journal of Chemistry, 2004, 28, 335.	2.8	31
113	InBr3-Catalyzed Cyclization of Glycals with Aryl Amines. Angewandte Chemie - International Edition, 2003, 42, 5198-5201.	13.8	47
114	InCl3 immobilized in ionic liquids: a novel and recyclable catalytic system for tetrahydropyranylation and furanylation of alcohols. New Journal of Chemistry, 2003, 27, 202-204.	2.8	28
115	[Bmim]PF6/RuCl3·xH2O: a novel and recyclable catalytic system for the oxidative coupling of β-naphthols. New Journal of Chemistry, 2003, 27, 1684-1686.	2.8	25
116	Three-component coupling reactions in ionic liquids: a facile synthesis of \hat{l}_{\pm} -aminonitriles. New Journal of Chemistry, 2003, 27, 462-465.	2.8	77
117	Metal triflates catalyzed efficient synthesis of 3,4-dihydro-2H-1-benzopyrans. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 165-171.	1.3	3
118	Dy(OTf)3-immobilized in ionic liquids: a novel and recyclable reaction media for the synthesis of 2,3-unsaturated glycopyranosides. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2390-2394.	1.3	71
119	Elemental iodine catalyzed $[4+2]$ cycloaddition reactions of o-quinomethanes: an efficient synthesis of trans-fused pyrano $[3,2-c]$ benzopyrans. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1401-1404.	1.3	36
120	Ultrasound-accelerated synthesis of 3,4-dihydropyrimidin-2(1H)-ones with ceric ammonium nitrateâ€. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1939-1941.	1.3	133
121	Ceric(iv) ammonium nitrate-catalyzed glycosidation of glycals: a facile synthesis of 2,3-unsaturated glycosides. New Journal of Chemistry, 2001, 25, 538-540.	2.8	31
122	Montmorillonite clay-catalyzed stereoselective syntheses of aryl-substituted (E)- and (Z)-allyl iodides and bromides. New Journal of Chemistry, 2001, 25, 1114-1117.	2.8	30
123	Amberlyst-15-Catalyzed Novel Synthesis of Tetrahydropyranols. Synthesis, 2001, 2001, 0885-0888.	2.3	37
124	A mild and selective cleavage of tert-butyldimethylsilyl ethers by indium(III) chloride. New Journal of Chemistry, 2000, 24, 853-854.	2.8	26
125	CsF–Al2O3 mediated rapid condensation of phenols with aryl halides: comparative study of conventional heating vs. microwave irradiation. New Journal of Chemistry, 2000, 24, 489-491.	2.8	19
126	Selective acylation of aliphatic alcohols in the presence of phenolic hydroxyl groups. New Journal of Chemistry, 2000, 24, 63-64.	2.8	8

#	Article	IF	CITATIONS
127	Indium-mediated efficient conversion of azides to carbamates. New Journal of Chemistry, 2000, 24, 571-573.	2.8	30