
Virginia Maria Tavano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7200131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture, 2005, 246, 405-412.	3.5	159
2	Shifts in the dominance between diatoms and cryptophytes during three late summers in the Bransfield Strait (Antarctic Peninsula). Polar Biology, 2013, 36, 537-547.	1.2	121
3	Evaluation of SeaWiFS chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans. Remote Sensing of Environment, 2005, 95, 125-137.	11.0	116
4	Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-break in spring. Deep-Sea Research Part I: Oceanographic Research Papers, 2008, 55, 1150-1166.	1.4	104
5	Dynamics of phytoplankton communities during late summer around the tip of the Antarctic Peninsula. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 65, 1-14.	1.4	91
6	New insights on the dominance of cryptophytes in Antarctic coastal waters: A case study in Gerlache Strait. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 149, 161-170.	1.4	67
7	Chlorophyll variability and eddies in the Brazil–Malvinas Confluence region. Deep-Sea Research Part II: Topical Studies in Oceanography, 2004, 51, 159-172.	1.4	66
8	Probable origin and toxin profile of Alexandrium tamarense (Lebour) Balech from southern Brazil. Harmful Algae, 2006, 5, 36-44.	4.8	55
9	Biological, physical and chemical properties at the Subtropical Shelf Front Zone in the SW Atlantic Continental Shelf. Continental Shelf Research, 2008, 28, 1662-1673.	1.8	54
10	Biogeographical regions of the tropical and subtropical Atlantic Ocean off South America: classification based on pigment (CZCS) and chlorophyll-a (SeaWiFS) variability. Continental Shelf Research, 2004, 24, 983-1000.	1.8	48
11	Influence of oceanographic features on spatial and interannual variability of phytoplankton in the Bransfield Strait, Antarctica. Journal of Marine Systems, 2015, 142, 1-15.	2.1	48
12	Seasonal and interannual variability of calcite in the vicinity of the Patagonian shelf break (38°S–52°S). Geophysical Research Letters, 2006, 33, .	4.0	46
13	Cross-front phytoplankton pigments and chemotaxonomic groups in the Indian sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 118, 221-232.	1.4	46
14	Variability of chlorophyll-a from ocean color images in the La Plata continental shelf region. Continental Shelf Research, 2008, 28, 1568-1578.	1.8	43
15	Spatial distribution of phytoplankton assemblages in the Nazaré submarine canyon region (Portugal): HPLC-CHEMTAX approach. Journal of Marine Systems, 2011, 87, 90-101.	2.1	41
16	Empirical and semiâ€enalytical chlorophyll algorithms in the southâ€western Atlantic coastal region (25–40°S and 60–45°W). International Journal of Remote Sensing, 2006, 27, 1539-1562.	2.9	37
17	Changes in Phytoplankton Communities Along the Northern Antarctic Peninsula: Causes, Impacts and Research Priorities. Frontiers in Marine Science, 2020, 7, .	2.5	32
18	Microalgae classification using semi-supervised and active learning based on Gaussian mixture models. Journal of the Brazilian Computer Society, 2013, 19, 411-422.	1.3	31

#	Article	IF	CITATIONS
19	Dynamics of an intense diatom bloom in the Northern Antarctic Peninsula, February 2016. Limnology and Oceanography, 2020, 65, 2056-2075.	3.1	31
20	How fast is the Patagonian shelf-break acidifying?. Journal of Marine Systems, 2018, 178, 1-14.	2.1	30
21	Environmental conditions and bio-optical signature of a coccolithophorid bloom in the Patagonian shelf. Journal of Geophysical Research, 2011, 116, .	3.3	29
22	Impact of sea ice on the structure of phytoplankton communities in the northern Antarctic Peninsula. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 149, 111-123.	1.4	29
23	The influence of irradiance on growth, photosynthesis and respiration of Gyrodinium cf. aureolum. Journal of Plankton Research, 1992, 14, 1251-1265.	1.8	27
24	Contrasting patterns of phytoplankton pigments and chemotaxonomic groups along 30°S in the subtropical South Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2017, 120, 112-121.	1.4	27
25	Brazil-Malvinas confluence: effects of environmental variability on phytoplankton community structure. Journal of Plankton Research, 2012, 34, 399-415.	1.8	26
26	Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition. Journal of Geophysical Research: Oceans, 2013, 118, 698-714.	2.6	25
27	Light absorption by phytoplankton, non-algal particles and dissolved organic matter at the Patagonia shelf-break in spring and summer. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 2162-2174.	1.4	22
28	Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011. Continental Shelf Research, 2016, 119, 68-84.	1.8	22
29	Phytoplankton community during a coccolithophorid bloom in the Patagonian Shelf: microscopic and high-performance liquid chromatography pigment analyses. Journal of the Marine Biological Association of the United Kingdom, 2012, 92, 13-27.	0.8	21
30	Sea-air CO2 fluxes and pCO2 variability in the Northern Antarctic Peninsula during three summer periods (2008–2010). Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 149, 84-98.	1.4	20
31	<i>Trichodesmium</i> latitudinal distribution on the shelf break in the southwestern Atlantic Ocean during spring and autumn. Global Biogeochemical Cycles, 2016, 30, 1738-1753.	4.9	19
32	Deep Learning for Microalgae Classification. , 2017, , .		19
33	Carbonate system properties in the Gerlache Strait, Northern Antarctic Peninsula (February 2015): II. Anthropogenic CO2 and seawater acidification. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 149, 182-192.	1.4	19
34	Pigment-based chemotaxonomy of phytoplankton in the Patos Lagoon estuary (Brazil) and adjacent coast. Marine Biology Research, 2017, 13, 22-35.	0.7	18
35	Carbonate system properties in the Gerlache Strait, Northern Antarctic Peninsula (February 2015): I. Sea–Air CO2 fluxes. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 149, 171-181.	1.4	18
36	Spatial variability of photophysiology and primary production rates of the phytoplankton communities across the western Antarctic Peninsula in late summer 2013. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 149, 99-110.	1.4	17

Virginia Maria Tavano

#	Article	IF	CITATIONS
37	Primary production studies during a Gyrodinium cf. aureolum (Dinophyceae) bloom in the western English Channel. Marine Biology, 1994, 119, 297-305.	1.5	15
38	Seasonal change of phytoplankton (spring vs. summer) in the southern Patagonian shelf. Continental Shelf Research, 2016, 124, 142-152.	1.8	15
39	Large diatom bloom off the Antarctic Peninsula during cool conditions associated with the 2015/2016 El Niño. Communications Earth & Environment, 2021, 2, .	6.8	15
40	The impact of mesoscale eddies on the phytoplankton community in the South Atlantic Ocean: HPLC-CHEMTAX approach. Marine Environmental Research, 2019, 144, 154-165.	2.5	14
41	Effects of low-salinity and high-turbidity waters on empirical ocean colour algorithms: An example for Southwestern Atlantic waters. Continental Shelf Research, 2013, 59, 84-96.	1.8	13
42	Environmental conditions during phytoplankton blooms in the vicinity of James Ross Island, east of the Antarctic Peninsula. Polar Biology, 2015, 38, 1111-1127.	1.2	13
43	Shifts in microphytoplankton species and cell size at Admiralty Bay, Antarctica. Antarctic Science, 2015, 27, 225-239.	0.9	13
44	Sea-air carbon dioxide fluxes along 35°S in the South Atlantic Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 115, 175-187.	1.4	12
45	Chemotaxonomy-based mapping of phytoplankton communities in the subtropical Southwestern Atlantic Ocean, with emphasis on the marine cyanobacterium Trichodesmium. Progress in Oceanography, 2019, 172, 77-88.	3.2	12
46	Phyto- and protozooplankton assemblages and hydrographic variability during an early winter survey in the Southern Brazilian Continental Shelf. Journal of Marine Systems, 2018, 184, 36-49.	2.1	11
47	Photophysiological effects of Fe concentration gradients on diatom-dominated phytoplankton assemblages in the Antarctic Peninsula region. Journal of Experimental Marine Biology and Ecology, 2015, 466, 49-58.	1.5	9
48	Inferring episodic atmospheric iron fluxes in the Western South Atlantic. Atmospheric Environment, 2010, 44, 703-712.	4.1	7
49	Overview on Primary Production in the Southwestern Atlantic. , 2018, , 101-126.		7
50	Supervised Microalgae Classification in Imbalanced Dataset. , 2016, , .		6
51	The southwestern South Atlantic continental shelf biogeochemical divide. Biogeochemistry, 2022, 159, 139-158.	3.5	4
52	Chemotaxonomic characterization of the key genera of diatoms in the Northern Antarctic Peninsula. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20210584.	0.8	3
53	Potential source regions of biogenic aerosol number concentration apportioning at King George Island, Antarctic Peninsula. Antarctic Science, 2010, 22, 580-588.	0.9	2