Neil H Landman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7199660/publications.pdf

Version: 2024-02-01

172457 233421 2,645 100 29 45 citations h-index g-index papers 105 105 105 1053 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Role of Ammonites in the Mesozoic Marine Food Web Revealed by Jaw Preservation. Science, 2011, 331, 70-72.	12.6	127
2	Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22500-22504.	7.1	116
3	<i>Nautilus</i> â€"a poor model for the function and behavior of ammonoids?. Lethaia, 1993, 26, 101-111.	1.4	113
4	Mode and Rate of Growth in Ammonoids. Topics in Geobiology, 1996, , 407-461.	0.5	89
5	Paleoceanography of the Late Cretaceous (Maastrichtian) Western Interior Seaway of North America: evidence from Sr and O isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 191, 45-64.	2.3	80
6	Growth rate and habitat of <i>Nautilus pompilius</i> inferred from radioactive and stable isotope studies. Paleobiology, 1981, 7, 469-480.	2.0	79
7	EARLY EVOLUTIONARY TRENDS IN AMMONOID EMBRYONIC DEVELOPMENT. Evolution; International Journal of Organic Evolution, 2012, 66, 1788-1806.	2.3	70
8	Early life history of <i>Nautilus </i> : evidence from isotopic analyses of aquarium-reared specimens. Paleobiology, 1994, 20, 40-51.	2.0	68
9	Early ontogeny of Eutrephoceras compared to Recent Nautilus and Mesozoic ammonites: evidence from shell morphology and light stable isotopes. Paleobiology, 1983, 9, 269-279.	2.0	65
10	Ammonite shell shape covaries with facies and hydrodynamics: Iterative evolution as a response to changes in basinal environment. Geology, 1994, 22, 905.	4.4	65
11	Mode of life and habitat of scaphitid ammonites. Geobios, 2012, 45, 87-98.	1.4	65
12	Mature Modifications and Dimorphism in Ammonoid Cephalopods. Topics in Geobiology, 1996, , 463-539.	0.5	61
13	Ammonoid Embryonic Development. Topics in Geobiology, 1996, , 343-405.	0.5	59
14	Scaphites of the "Nodosus Group―from the Upper Cretaceous (Campanian) of the Western Interior of North America. Bulletin of the American Museum of Natural History, 2010, 342, 1-242.	3.4	53
15	Shell abnormalities in scaphitid ammonites. Lethaia, 1986, 19, 211-224.	1.4	52
16	Genetic divergence and geographic diversification in <i>Nautilus</i> . Paleobiology, 1995, 21, 220-228.	2.0	49
17	Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology, 2014, 42, 707-710.	4.4	49
18	Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15562-15567.	7.1	46

#	Article	IF	CITATIONS
19	Methane seeps as ammonite habitats in the U.S. Western Interior Seaway revealed by isotopic analyses of well-preserved shell material. Geology, 2012, 40, 507-510.	4.4	44
20	Molecular structure of organic components in cephalopods: Evidence for oxidative cross linking in fossil marine invertebrates. Organic Geochemistry, 2008, 39, 1405-1414.	1.8	43
21	Describing Ammonoid Conchs. Topics in Geobiology, 2015, , 3-24.	0.5	43
22	Ammonoid Embryonic Development. Topics in Geobiology, 2015, , 113-205.	0.5	43
23	Analysis of a Carboniferous embryonic ammonoid assemblage implications for ammonoid embryology. Lethaia, 1993, 26, 215-224.	1.4	42
24	CEPHALOPODS FROM THE CRETACEOUS/TERTIARY BOUNDARY INTERVAL ON THE ATLANTIC COASTAL PLAIN, WITH A DESCRIPTION OF THE HIGHEST AMMONITE ZONES IN NORTH AMERICA. PART III. MANASQUAN RIVER BASIN, MONMOUTH COUNTY, NEW JERSEY. Bulletin of the American Museum of Natural History, 2007, 303, 1.	3.4	41
25	Ammonoid Buccal Mass and Jaw Apparatus. Topics in Geobiology, 2015, , 429-484.	0.5	41
26	Anatomy and evolution of the first Coleoidea in the Carboniferous. Communications Biology, 2019, 2, 280.	4.4	39
27	Iterative progenesis in Upper Cretaceous ammonites. Paleobiology, 1989, 15, 95-117.	2.0	36
28	CEPHALOPODS FROM THE CRETACEOUS/TERTIARY BOUNDARY INTERVAL ON THE ATLANTIC COASTAL PLAIN, WITH A DESCRIPTION OF THE HIGHEST AMMONITE ZONES IN NORTH AMERICA. PART 2. NORTHEASTERN MONMOUTH COUNTY, NEW JERSEY. Bulletin of the American Museum of Natural History, 2004, 287, 1-107.	3.4	35
29	Radiometric determination of the growth rate of Nautilus in nature. Nature, 1984, 308, 725-727.	27.8	32
30	Genomic signatures of evolution in <i>Nautilus</i> â€"An endangered living fossil. Molecular Ecology, 2017, 26, 5923-5938.	3.9	30
31	Soft-part anatomy of the siphuncle in Permian prolecanitid ammonoids. Lethaia, 2000, 33, 83-91.	1.4	29
32	The complex nature of progenetic species â€" examples from Mesozoic ammonites. Lethaia, 1991, 24, 409-421.	1.4	26
33	Isotope sclerochronology of ammonites (<i>Baculites Compressus</i>) from methane seep and non-seep sites in the Late Cretaceous Western Interior Seaway, USA: Implications for ammonite habitat and mode of life. Numerische Mathematik, 2018, 318, 603-639.	1.4	26
34	Chamber volume development, metabolic rates, and selective extinction in cephalopods. Scientific Reports, 2020, 10, 2950.	3.3	26
35	Cephalopods from the Cretaceous/Tertiary Boundary Interval on the Atlantic Coastal Plain, with a Description of the Highest Ammonite Zones in North America. Part $1\cdot$ Maryland and North Carolina. American Museum Novitates, 2004, 3454, $1\cdot$	0.6	24
36	Aptychi microstructure in Late Cretaceous Ancyloceratina (Ammonoidea). Lethaia, 2009, 42, 312-321.	1.4	24

#	Article	IF	CITATIONS
37	Ammonites on the Brink of Extinction: Diversity, Abundance, and Ecology of the Order Ammonoidea at the Cretaceous/Paleogene (K/Pg) Boundary. Topics in Geobiology, 2015, , 497-553.	0.5	24
38	Ammonites from the Upper Part of the Pierre Shale and Fox Hills Formation of Colorado. American Museum Novitates, 2003, 3388, 1-45.	0.6	22
39	Heterochrony in Ammonites. Topics in Geobiology, 1988, , 159-182.	0.5	22
40	Jaws of Late Cretaceous Placenticeratid Ammonites: How Preservation Affects the Interpretation of Morphology. American Museum Novitates, 2006, 3500, 1-48.	0.6	21
41	The jaw apparatuses of Cretaceous Phylloceratina (Ammonoidea). Lethaia, 2013, 46, 399-408.	1.4	21
42	Ion microprobe–measured stable isotope evidence for ammonite habitat and life mode during early ontogeny. Paleobiology, 2018, 44, 684-708.	2.0	21
43	Intra- and interspecific variation in the early internal shell features of some Cretaceous ammonoids. Journal of Paleontology, 2003, 77, 876-887.	0.8	20
44	Geochemical evidence (C and Sr isotopes) for methane seeps as ammonite habitats in the Late Cretaceous (Campanian) Western Interior Seaway. Swiss Journal of Palaeontology, 2015, 134, 153-165.	1.7	20
45	Nautilid nurseries: hatchlings and juveniles of <i>Eutrephoceras dekayi</i> from the lower Maastrichtian (Upper Cretaceous) Pierre Shale of eastâ€central Montana. Lethaia, 2018, 51, 48-74.	1.4	20
46	Syn vivo hydrostatic and hydrodynamic properties of scaphitid ammonoids from the U.S. Western Interior. Geobios, 2020, 60, 79-98.	1.4	20
47	FAUNAL ASSOCIATIONS IN COLD-METHANE SEEP DEPOSITS FROM THE UPPER CRETACEOUS PIERRE SHALE, SOUTH DAKOTA. Palaios, 2016, 31, 291-301.	1.3	18
48	<i>Proteroctopus ribeti</i> in coleoid evolution. Palaeontology, 2016, 59, 767-773.	2.2	17
49	Pseudosutures in Paleozoic ammonoids. Lethaia, 1993, 26, 99-100.	1.4	15
50	The jaw apparatus of the Late Cretaceous ammonite <i>Didymoceras</i> . Journal of Paleontology, 2010, 84, 556-560.	0.8	15
51	<i>Lakotacrinus brezinai</i> i>n. gen. n. sp., a new stalked crinoid from cold methane seeps in the Upper Cretaceous (Campanian) Pierre Shale, South Dakota, United States. Journal of Paleontology, 2016, 90, 506-524.	0.8	15
52	Cameral membranes in prolecanitid and goniatitid ammonoids from the Permian Arcturus Formation, Nevada, USA. Lethaia, 2006, 39, 365-379.	1.4	14
53	A New Species of <i>Hoploscaphites </i> (Ammonoidea: Ancyloceratina) from Cold Methane Seeps in the Upper Cretaceous of the U.S. Western Interior. American Museum Novitates, 2013, 3781, 1-39.	0.6	14
54	Jaws and Radula of Baculites from the Upper Cretaceous (Campanian) of North America. , 2007, , 257-298.		14

#	Article	IF	CITATIONS
55	Microstructure and mineralogy of the outer calcareous layer in the lower jaws of Cretaceous Tetragonitoidea and Desmoceratoidea (Ammonoidea). Lethaia, 2012, 45, 191-199.	1.4	13
56	Morphology and environment of Upper Cretaceous (Maastrichtian) Scaphites. Geobios, 1993, 26, 257-265.	1.4	12
57	Development of the Embryonic Shell Structure of Mesozoic Ammonoids. American Museum Novitates, 2008, 3621, 1.	0.6	12
58	3-D orientation and distribution of ammonites in a concretion from the Upper Cretaceous Pierre Shale of Montana. Swiss Journal of Palaeontology, 2015, 134, 257-279.	1.7	12
59	Durophagous predation on scaphitid ammonoids in the Late Cretaceous Western Interior Seaway of North America. Lethaia, 2016, 49, 28-42.	1.4	12
60	New insights into the buccal apparatus of the Goniatitina: palaeobiological and phylogenetic implications. Lethaia, 2014, 47, 38-48.	1.4	11
61	Ammonoid Radula. Topics in Geobiology, 2015, , 485-505.	0.5	11
62	Fossil coleoid cephalopod from the Mississippian Bear Gulch Lagerst $\tilde{A}^{\mathbf{H}}$ e sheds light on early vampyropod evolution. Nature Communications, 2022, 13, 1107.	12.8	11
63	Evolutionary stasis, ecophenotypy and environmental controls on ammonite morphology in the Late Cretaceous (Maastrichtian) Western Interior Seaway, USA. Palaeontology, 2020, 63, 791-806.	2.2	10
64	LATE CRETACEOUS METHANE SEEPS AS HABITATS FOR NEWLY HATCHED AMMONITES. Palaios, 2020, 35, 151-163.	1.3	10
65	Cephalopods from the Badlands National Park area, South Dakota: Reassessment of the position of the Cretaceous/Paleogene boundary. Cretaceous Research, 2013, 42, 1-27.	1.4	9
66	Inquilinism of a Baculite by a Dynomenid Crab from the Upper Cretaceous of South Dakota. American Museum Novitates, 2014, 3818, 1-16.	0.6	9
67	Syn-Vivo Bioerosion of Nautilus by Endo- and Epilithic Foraminiferans (New Caledonia and Vanuatu). PLoS ONE, 2015, 10, e0125558.	2.5	9
68	Getting unhooked: comment on the hypothesis that heteromorph ammonites were attached to kelp branches on the sea floor, as proposed by. Journal of Molluscan Studies, 2016, 82, 351-355.	1.2	9
69	EVALUATING GROWTH AND ECOLOGY IN BACULITID AND SCAPHITID AMMONITES USING STABLE ISOTOPE SCLEROCHRONOLOGY. Palaios, 2019, 34, 317-329.	1.3	9
70	Enigmatic hookâ€like structures in Cretaceous ammonites (Scaphitidae). Palaeontology, 2020, 63, 301-312.	2.2	9
71	Exceptional soft-tissue preservation of Jurassic Vampyronassa rhodanica provides new insights on the evolution and palaeoecology of vampyroteuthids. Scientific Reports, 2022, 12, .	3.3	9
72	Chapter 3: Scaphitid Ammonites from the Upper Cretaceous (Coniacian-Santonian) Western Canada Foreland Basin. Bulletin of the American Museum of Natural History, 2017, 414, 105-172.	3.4	8

#	Article	IF	CITATIONS
73	Palaeoecological analysis of a methane seep deposit from the Upper Cretaceous (Maastrichtian) of the U.S. Western Interior. Lethaia, 2021, 54, 185-203.	1.4	8
74	Octopodoidea as predators near the end of the Mesozoic Marine Revolution. Biological Journal of the Linnean Society, 2021, 132, 894-899.	1.6	8
75	Significance of the suture line in cephalopod taxonomy revealed by 3D morphometrics in the modern nautilids Nautilus and Allonautilus. Scientific Reports, 2021, 11, 17114.	3.3	8
76	Description of Two Species of Hoploscaphites (Ammonoidea: Ancyloceratina) from the Upper Cretaceous (Lower Maastrichtian) of the U.S. Western Interior. Bulletin of the American Museum of Natural History, 2019, 2019, 1.	3.4	8
77	40Ar/39Ar date of a bentonite associated with a methane seep deposit in the upper Campanian Baculites compressus Zone, Pierre Shale, South Dakota. Cretaceous Research, 2018, 90, 90-96.	1.4	7
78	Temperatures of Late Cretaceous (Campanian) methane-derived authigenic carbonates from the Western Interior Seaway, South Dakota, USA, using clumped isotopes. Bulletin of the Geological Society of America, 2021, 133, 2524-2534.	3.3	7
79	An Unusual Occurrence of Nautilus macromphalus in a Cenote in the Loyalty Islands (New Caledonia). PLoS ONE, 2014, 9, e113372.	2.5	6
80	Encrustation of inarticulate brachiopods on scaphitid ammonites and inoceramid bivalves from the Upper Cretaceous U. S. Western Interior. Acta Geologica Polonica, 2016, 66, 645-662.	0.9	6
81	Microbial Bioerosion of Erratic Sub-FossilNautilusShells in a Karstic Cenote (Lifou, Loyalty Islands,) Tj ETQq1 1 0.78	34314 rgB [*]	T/Overlock
82	INTRA- AND INTERSPECIFIC VARIATION IN THE EARLY INTERNAL SHELL FEATURES OF SOME CRETACEOUS AMMONOIDS. Journal of Paleontology, 2003, 77, 876-887.	0.8	5
83	Chapter 1: Integrated, High-Resolution Allostratigraphic, Biostratigraphic and Carbon-Isotope Correlation of Coniacian Strata (Upper Cretaceous), Western Alberta and Northern Montana. Bulletin of the American Museum of Natural History, 2017, 2017, 9.	3.4	5
84	Patterns of intraspecific variation through ontogeny: a case study of the Cretaceous nautilid Eutrephoceras dekayi and modern Nautilus pompilius. Palaeontology, 2020, 63, 807-820.	2.2	5
85	The concept of †heteromorph ammonoids'. Lethaia, 2021, 54, 595-602.	1.4	5
86	Intraspecific Variation through Ontogeny in Late Cretaceous Ammonites. American Museum Novitates, 2019, 2019, 1.	0.6	5
87	Large Scaphitid Ammonites (Hoploscaphites) from the Upper Cretaceous (Upper Campanian–Lower) Tj ETQq1 ☐ Museum of Natural History, 2020, 441, 1.	l 0.78431 3.4	4 rgBT /Ov€ 5
88	Jaws of Triassic ammonoids from New Zealand. New Zealand Journal of Geology, and Geophysics, 2006, 49, 121-129.	1.8	4
89	Development of the Embryonic Shell of <i>Nautilus </i> . Short Course in Geology, 0, , 323-323.	0.0	4
90	Chapter 2: Inoceramid Bivalves from the Coniacian and Basal Santonian (Upper Cretaceous) of the Western Canada Foreland Basin. Bulletin of the American Museum of Natural History, 2017, 414, 53-103.	3.4	4

#	Article	lF	Citations
91	Cephalopods from the Cretaceous-Paleogene (K-Pg) Boundary Interval on the Brazos River, Texas, and Extinction of the Ammonites. American Museum Novitates, 2021, 2020, .	0.6	4
92	Fingerprinting the Cretaceous-Paleogene boundary impact with Zn isotopes. Nature Communications, 2021, 12, 4128.	12.8	4
93	Brittle-star mass occurrence on a Late Cretaceous methane seep from South Dakota, USA. Scientific Reports, 2018, 8, 9617.	3.3	3
94	Methane seeps as refugia during ash falls in the Late Cretaceous Western Interior Seaway of North America. Geology, 0, , .	4.4	2
95	Nautilus - model or muddle?. Lethaia, 1994, 27, 95-96.	1.4	1
96	Ammonoid growth rhythms. Lethaia, 2007, 16, 248-248.	1.4	1
97	Lower Jaw of Spathites (Ammonoidea: Acanthoceratoidea) from the Upper Cretaceous (Turonian) of New Mexico. American Museum Novitates, 2019, 2019, 1.	0.6	1
98	Geographic and temporal morphological stasis in the latest Cretaceous ammonoid <i>Discoscaphites iris</i> from the U.S. Gulf and Atlantic Coastal Plains. Paleobiology, 0, , 1-23.	2.0	1
99	A NEW AGE OF MORPHOLOGY TAKES SHAPE. Palaios, 2018, 33, 287-289.	1.3	0
100	Allostratigraphy and Biostratigraphy of the Upper Cretaceous (Coniacian-Santonian) Western Canada Foreland Basin. Bulletin of the American Museum of Natural History, 2017, 414, 1-172.	3.4	O