List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7199555/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Science and Technology, 2008, 57, 735-740.	1.2	305
2	Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiology Ecology, 2007, 59, 683-693.	1.3	292
3	Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance. Applied Energy, 2016, 179, 124-135.	5.1	251
4	Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiology Letters, 2010, 309, no-no.	0.7	220
5	Methane Production in Dairy Cows Correlates with Rumen Methanogenic and Bacterial Community Structure. Frontiers in Microbiology, 2017, 8, 226.	1.5	218
6	Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microbial Biotechnology, 2015, 8, 815-827.	2.0	197
7	Bioaugmentation of Syntrophic Acetate-Oxidizing Culture in Biogas Reactors Exposed to Increasing Levels of Ammonia. Applied and Environmental Microbiology, 2012, 78, 7619-7625.	1.4	191
8	Bacterial community composition and fhs profiles of low- and high-ammonia biogas digesters reveal novel syntrophic acetate-oxidising bacteria. Biotechnology for Biofuels, 2016, 9, 48.	6.2	190
9	Comparative characterization of digestate versus pig slurry and cow manure – Chemical composition and effects on soil microbial activity. Waste Management, 2017, 61, 529-538.	3.7	171
10	Tepidanaerobacter acetatoxydans sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from two ammonium-enriched mesophilic methanogenic processes. Systematic and Applied Microbiology, 2011, 34, 260-266.	1.2	170
11	Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature, 2015, 523, 602-606.	13.7	155
12	Volatile fatty acids production via mixed culture fermentation: Revealing the link between pH, inoculum type and bacterial composition. Bioresource Technology, 2019, 292, 121889.	4.8	140
13	Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. Journal of Bioscience and Bioengineering, 2012, 114, 446-452.	1.1	133
14	Quantification of syntrophic acetateâ€oxidizing microbial communities in biogas processes. Environmental Microbiology Reports, 2011, 3, 500-505.	1.0	132
15	Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate. Microbial Biotechnology, 2016, 9, 180-194.	2.0	128
16	First insights into the syntrophic acetateâ€oxidizing bacteria – a genetic study. MicrobiologyOpen, 2013, 2, 35-53.	1.2	126
17	The microbial community structure in industrial biogas plants influences the degradation rate of straw and cellulose in batch tests. Biotechnology for Biofuels, 2016, 9, 128.	6.2	125
18	Improved bio-energy yields via sequential ethanol fermentation and biogas digestion of steam exploded oat straw. Bioresource Technology, 2011, 102, 4449-4455.	4.8	112

#	Article	IF	CITATIONS
19	Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Archives of Microbiology, 1994, 162, 70-74.	1.0	107
20	Biogas production from wheat straw and manure – Impact of pretreatment and process operating parameters. Bioresource Technology, 2013, 149, 232-237.	4.8	100
21	Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production. Applied Energy, 2018, 226, 838-848.	5.1	96
22	Methanogenic Population and CH ₄ Production in Swedish Dairy Cows Fed Different Levels of Forage. Applied and Environmental Microbiology, 2012, 78, 6172-6179.	1.4	94
23	Conversion of phenols during anaerobic digestion of organic solid waste – A review of important microorganisms and impact of temperature. Journal of Environmental Management, 2012, 95, S99-S103.	3.8	94
24	Trace element and temperature effects on microbial communities and links to biogas digester performance at high ammonia levels. Biotechnology for Biofuels, 2015, 8, 154.	6.2	94
25	Syntrophic acetate oxidation in industrial CSTR biogas digesters. Journal of Biotechnology, 2014, 171, 39-44.	1.9	92
26	Importance of inoculum source and initial community structure for biogas production from agricultural substrates. Bioresource Technology, 2017, 245, 768-777.	4.8	92
27	Improved biogas production from whole stillage by co-digestion with cattle manure. Bioresource Technology, 2012, 114, 314-319.	4.8	85
28	Effects of temperature on biological degradation of phenols, benzoates and phthalates under methanogenic conditions. International Biodeterioration and Biodegradation, 2005, 55, 153-160.	1.9	75
29	Changes in the Acetogenic Population in a Mesophilic Anaerobic Digester in Response to Increasing Ammonia Concentration. Microbes and Environments, 2011, 26, 347-353.	0.7	72
30	Detection of novel syntrophic acetateâ€oxidizing bacteria from biogas processes by continuous acetate enrichment approaches. Microbial Biotechnology, 2018, 11, 680-693.	2.0	63
31	Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense. FEMS Microbiology Letters, 1997, 154, 331-336.	0.7	60
32	The effect of substrate and operational parameters on the abundance of sulphate-reducing bacteria in industrial anaerobic biogas digesters. Bioresource Technology, 2013, 132, 327-332.	4.8	59
33	Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil. Science of the Total Environment, 2006, 364, 229-238.	3.9	56
34	Growth Characteristics and Thermodynamics of Syntrophic Acetate Oxidizers. Environmental Science & Technology, 2019, 53, 5512-5520.	4.6	56
35	Genome-Guided Analysis and Whole Transcriptome Profiling of the Mesophilic Syntrophic Acetate Oxidising Bacterium Syntrophaceticus schinkii. PLoS ONE, 2016, 11, e0166520.	1.1	53
36	Effects of mechanical pre-treatment on the biogas yield from ley crop silage. Applied Energy, 2012, 97, 498-502.	5.1	52

#	Article	IF	CITATIONS
37	Anaerobic Fungi: A Potential Source of Biological H2 in the Oceanic Crust. Frontiers in Microbiology, 2016, 7, 674.	1.5	52
38	Production efficiency of Swedish farm-scale biogas plants. Biomass and Bioenergy, 2017, 97, 27-37.	2.9	49
39	Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes. Applied and Environmental Microbiology, 2018, 84, .	1.4	48
40	Biogas Production from Thin Stillage on an Industrial Scale—Experience and Optimisation. Energies, 2013, 6, 5642-5655.	1.6	47
41	Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate. Journal of Environmental Management, 2014, 136, 9-15.	3.8	45
42	Biogas Production: Microbiology and Technology. Advances in Biochemical Engineering/Biotechnology, 2016, 156, 195-234.	0.6	45
43	Complete genome sequence of Methanoculleus bourgensis strain MAB1, the syntrophic partner of mesophilic acetate-oxidising bacteria (SAOB). Standards in Genomic Sciences, 2016, 11, 80.	1.5	44
44	Biogas production from wheat straw: community structure of cellulose-degrading bacteria. Energy, Sustainability and Society, 2013, 3, .	1.7	43
45	Serial anaerobic digestion improves protein degradation and biogas production from mixed food waste. Biomass and Bioenergy, 2022, 161, 106478.	2.9	42
46	Fungal survival during anaerobic digestion of organic household waste. Waste Management, 2006, 26, 1205-1211.	3.7	41
47	Microbial Responses to Different Operating Practices for Biogas Production Systems. , 0, , .		40
48	In situ ammonia production as a sanitation agent during anaerobic digestion at mesophilic temperature. Letters in Applied Microbiology, 2008, 46, 325-330.	1.0	38
49	Microbial Community Structure in a Serpentine-Hosted Abiotic Gas Seepage at the Chimaera Ophiolite, Turkey. Applied and Environmental Microbiology, 2017, 83, .	1.4	37
50	Comparison of operating strategies for increased biogas production from thin stillage. Journal of Biotechnology, 2014, 175, 22-30.	1.9	34
51	Effects of thermal hydrolytic pre-treatment on biogas process efficiency and microbial community structure in industrial- and laboratory-scale digesters. Waste Management, 2019, 95, 150-160.	3.7	33
52	Ammonia-oxidizing communities in agricultural soil incubated with organic waste residues. Biology and Fertility of Soils, 2006, 42, 315-323.	2.3	31
53	Sulfide level in municipal sludge digesters affects microbial community response to long-chain fatty acid loads. Biotechnology for Biofuels, 2019, 12, 259.	6.2	30
54	AcetoBase: a functional gene repository and database for formyltetrahydrofolate synthetase sequences. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	29

#	Article	IF	CITATIONS
55	Genome-Guided Analysis of Physiological Capacities of Tepidanaerobacter acetatoxydans Provides Insights into Environmental Adaptations and Syntrophic Acetate Oxidation. PLoS ONE, 2015, 10, e0121237.	1.1	28
56	Twoâ€stage anaerobic digestion for reduced hydrogen sulphide production. Journal of Chemical Technology and Biotechnology, 2016, 91, 1055-1062.	1.6	28
57	Inoculum Source Determines Acetate and Lactate Production during Anaerobic Digestion of Sewage Sludge and Food Waste. Bioengineering, 2020, 7, 3.	1.6	28
58	Molecular characterisation of two anaerobic phenol-degrading enrichment cultures. International Biodeterioration and Biodegradation, 2010, 64, 427-433.	1.9	27
59	Genome-Guided Analysis of Clostridium ultunense and Comparative Genomics Reveal Different Strategies for Acetate Oxidation and Energy Conservation in Syntrophic Acetate-Oxidising Bacteria. Genes, 2018, 9, 225.	1.0	27
60	Perspectives on Potential Applications of Nanometal Derivatives in Gaseous Bioenergy Pathways: Mechanisms, Life Cycle, and Toxicity. ACS Sustainable Chemistry and Engineering, 2021, 9, 9563-9589.	3.2	26
61	Effects on enteric methane production and bacterial and archaeal communities by the addition of cashew nut shell extract or glycerol—An in vitro evaluation. Journal of Dairy Science, 2014, 97, 5729-5741.	1.4	25
62	Acetate and Lactate Production During Two-Stage Anaerobic Digestion of Food Waste Driven by Lactobacillus and Aeriscardovia. Frontiers in Energy Research, 2020, 8, .	1.2	23
63	Comparison of pasteurization and integrated thermophilic sanitation at a full-scale biogas plant – Heat demand and biogas production. Energy, 2015, 79, 419-427.	4.5	21
64	Biogas digestates based on lignin-rich feedstock – potential as fertilizer and soil amendment. Archives of Agronomy and Soil Science, 2018, 64, 347-359.	1.3	21
65	Substrate-Induced Response in Biogas Process Performance and Microbial Community Relates Back to Inoculum Source. Microorganisms, 2018, 6, 80.	1.6	21
66	The potential for polyphosphate metabolism in Archaea and anaerobic polyphosphate formation in Methanosarcina mazei. Scientific Reports, 2019, 9, 17101.	1.6	21
67	Effect of Cobalt, Nickel, and Selenium/Tungsten Deficiency on Mesophilic Anaerobic Digestion of Chemically Defined Soluble Organic Compounds. Microorganisms, 2020, 8, 598.	1.6	21
68	Enrichment and description of novel bacteria performing syntrophic propionate oxidation at high ammonia level. Environmental Microbiology, 2021, 23, 1620-1637.	1.8	21
69	Effect of Nickel Levels on Hydrogen Partial Pressure and Methane Production in Methanogens. PLoS ONE, 2016, 11, e0168357.	1.1	21
70	Presence of potential ammonia oxidation (PAO) inhibiting substances in anaerobic digestion residues. Applied Soil Ecology, 2004, 26, 107-112.	2.1	19
71	Working draft genome sequence of the mesophilic acetate oxidizing bacterium Syntrophaceticus schinkii strain Sp3. Standards in Genomic Sciences, 2015, 10, 99.	1.5	19
72	First Genome Sequence of a Syntrophic Acetate-Oxidizing Bacterium, <i>Tepidanaerobacter acetatoxydans</i> Strain Re1. Genome Announcements, 2013, 1, .	0.8	18

#	Article	IF	CITATIONS
73	Fate of Ah-receptor agonists in organic household waste during anaerobic degradation—estimation of levels using EROD induction in organ cultures of chick embryo livers. Science of the Total Environment, 2002, 297, 105-108.	3.9	17
74	Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure. Renewable Energy, 2018, 125, 529-536.	4.3	17
75	Anaerobic Digestion of Animal Manure and Influence of Organic Loading Rate and Temperature on Process Performance, Microbiology, and Methane Emission From Digestates. Frontiers in Energy Research, 2021, 9, .	1.2	17
76	Draft Genome Sequence of Clostridium ultunense Strain Esp, a Syntrophic Acetate-Oxidizing Bacterium. Genome Announcements, 2013, 1, e0010713.	0.8	16
77	Enzyme activities in and energetics of acetate metabolism by the mesophilic syntrophically acetate-oxidizing anaerobe Clostridium ultunense. FEMS Microbiology Letters, 2006, 154, 331-336.	0.7	15
78	Forage types and origin of manure in codigestion affect methane yield and microbial community structure. Grass and Forage Science, 2018, 73, 740-757.	1.2	15
79	QTL Mapping of Wood FT-IR Chemotypes Shows Promise for Improving Biofuel Potential in Short Rotation Coppice Willow (Salix spp.). Bioenergy Research, 2018, 11, 351-363.	2.2	15
80	Isolation of antibiotic-resistant bacteria in biogas digestate and their susceptibility to antibiotics. Environmental Pollution, 2020, 266, 115265.	3.7	14
81	Diversity and Abundance of Microbial Communities in UASB Reactors during Methane Production from Hydrolyzed Wheat Straw and Lucerne. Microorganisms, 2020, 8, 1394.	1.6	14
82	Microbial Community Ability to Adapt to Altered Temperature Conditions Influences Operating Stability in Anaerobic Digestion. Energy Procedia, 2017, 105, 895-900.	1.8	13
83	Profiling temporal dynamics of acetogenic communities in anaerobic digesters using next-generation sequencing and T-RFLP. Scientific Reports, 2021, 11, 13298.	1.6	12
84	Fractionation and Determination of Ah Receptor (AhR) Agonists in Organic Waste After Anaerobic Biodegradation and in Batch Experiments with PCB and decaBDE (8 pp). Environmental Science and Pollution Research, 2007, 14, 36-43.	2.7	11
85	Complete Genome Sequence of the Methanogen Methanoculleus bourgensis BA1 Isolated from a Biogas Reactor. Genome Announcements, 2016, 4, .	0.8	11
86	Dynamics of a Perturbed Microbial Community during Thermophilic Anaerobic Digestion of Chemically Defined Soluble Organic Compounds. Microorganisms, 2018, 6, 105.	1.6	11
87	Biomass Recalcitrance in Willow Under Two Biological Conversion Paradigms: Enzymatic Hydrolysis and Anaerobic Digestion. Bioenergy Research, 2020, 13, 260-270.	2.2	10
88	High-Throughput Sequencing and Unsupervised Analysis of Formyltetrahydrofolate Synthetase (FTHFS) Gene Amplicons to Estimate Acetogenic Community Structure. Frontiers in Microbiology, 2020, 11, 2066.	1.5	10
89	Effluent solids recirculation to municipal sludge digesters enhances long-chain fatty acids degradation capacity. Biotechnology for Biofuels, 2021, 14, 56.	6.2	10
90	Identifying targets for increased biogas production through chemical and organic matter characterization of digestate from full-scale biogas plants: what remains and why?. , 2022, 15, 16.		10

#	Article	IF	CITATIONS
91	Microbiological Surveillance of Biogas Plants: Targeting Acetogenic Community. Frontiers in Microbiology, 2021, 12, 700256.	1.5	8
92	Microbial community development during syngas methanation in a trickle bed reactor with various nutrient sources. Applied Microbiology and Biotechnology, 2022, 106, 5317-5333.	1.7	7
93	Crystal ball – 2013. Microbial Biotechnology, 2013, 6, 3-16.	2.0	6
94	Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Archives of Microbiology, 1994, 162, 70-74.	1.0	6
95	Miniphocaeibacter halophilus sp. nov., an ammonium-tolerant acetate-producing bacterium isolated from a biogas system. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	6
96	Monitoring growth of the methanogenic archaea Methanobacterium formicicum using an electronic nose. Biotechnology Letters, 2001, 23, 241-248.	1.1	5
97	Response of Induced Perturbation on Replicating β-Proteobacterial Ammonia-Oxidizing Populations in Soil. Microbial Ecology, 2012, 63, 701-709.	1.4	4
98	Uncovering antimicrobial resistance in three agricultural biogas plants using plant-based substrates. Science of the Total Environment, 2022, 829, 154556.	3.9	4
99	AcetoBase Version 2: a database update and re-analysis of formyltetrahydrofolate synthetase amplicon sequencing data from anaerobic digesters. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	1.4	3
100	Draft Genome Sequence of the Cellulolytic Strain Clostridium sp. Bc-iso-3 Isolated from an Industrial-Scale Anaerobic Digester. Genome Announcements, 2016, 4, .	0.8	2
101	A Study in Blue: Secondary Copperâ€Rich Minerals and Their Associated Bacterial Diversity in Icelandic Lava Tubes. Earth and Space Science, 2022, 9, .	1.1	2
102	Co-Digestion of Salix and Manure for Biogas: Importance of Clone Choice, Coppicing Frequency and Reactor Setup. Energies, 2020, 13, 3804.	1.6	1
103	lon Torrent sequencing and pipeline assembly of the first genome sequence of a mesophilic syntrophic acetate oxidizing bacterium (SAOB). EMBnet Journal, 2013, 19, 60.	0.2	1