David Bastviken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7199408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-methane volatile organic compound flux from a subarctic mire in Northern Sweden. Tellus, Series B: Chemical and Physical Meteorology, 2022, 60, 226.	0.8	33
2	Chlorination of soil organic matter: The role of humus type and land use. Science of the Total Environment, 2022, 806, 150478.	3.9	9
3	Ground-based remote sensing of CH4 and N2O fluxes from a wastewater treatment plant and nearby biogas production with discoveries of unexpected sources. Environmental Research, 2022, 204, 111978.	3.7	14
4	Chemosynthesis. , 2022, , 118-135.		1
5	Methane. , 2022, , 136-154.		2
6	Global increase in methane production under future warming of lake bottom waters. Global Change Biology, 2022, 28, 5427-5440.	4.2	27
7	Groundwater discharge as a driver of methane emissions from Arctic lakes. Nature Communications, 2022, 13, .	5.8	18
8	Unraveling the chemodiversity of halogenated disinfection by-products formed during drinking water treatment using target and non-target screening tools. Journal of Hazardous Materials, 2021, 401, 123681.	6.5	40
9	Turbulence in a small boreal lake: Consequences for air–water gas exchange. Limnology and Oceanography, 2021, 66, 827-854.	1.6	27
10	Chlorine cycling and the fate of Cl in terrestrial environments. Environmental Science and Pollution Research, 2021, 28, 7691-7709.	2.7	23
11	Global importance of methane emissions from drainage ditches and canals. Environmental Research Letters, 2021, 16, 044010.	2.2	45
12	Spatial and vertical distribution of aerobic and anaerobic dark inorganic carbon fixation in coastal tropical lake sediments. Aquatic Sciences, 2021, 83, 1.	0.6	4
13	Low Diffusive Methane Emissions From the Main Channel of a Large Amazonian Run-of-the-River Reservoir Attributed to High Methane Oxidation. Frontiers in Environmental Science, 2021, 9, .	1.5	6
14	Wholeâ€lake methane emissions from two temperate shallow lakes with fluctuating water levels: Relevance of spatiotemporal patterns. Limnology and Oceanography, 2021, 66, 2455-2469.	1.6	15
15	The consolidated European synthesis of CH ₄ and N ₂ O emissions for the European Union and United Kingdom: 1990–2017. Earth System Science Data, 2021, 13, 2307-2362.	3.7	16
16	Ultra-broadband infrared gas sensor for pollution detection: the TRIAGE project. JPhys Photonics, 2021, 3, 031003.	2.2	8
17	How green can Amazon hydropower be? Net carbon emission from the largest hydropower plant in Amazonia. Science Advances, 2021, 7, .	4.7	18
18	Small artificial waterbodies are widespread and persistent emitters of methane and carbon dioxide. Global Change Biology, 2021, 27, 5109-5123.	4.2	50

#	Article	IF	CITATIONS
19	Sensitive Drone Mapping of Methane Emissions without the Need for Supplementary Ground-Based Measurements. ACS Earth and Space Chemistry, 2021, 5, 2668-2676.	1.2	18
20	Spatiotemporal Methane Emission From Global Reservoirs. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006305.	1.3	23
21	Diel Variability of CO ₂ Emissions From Northern Lakes. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006246.	1.3	14
22	Phosphorus Regulation of Methane Oxidation in Water From Ice overed Lakes. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006190.	1.3	8
23	Annual CO2 and CH4 fluxes in coastal earthen ponds with Litopenaeus vannamei in southeastern China. Aquaculture, 2021, 545, 737229.	1.7	21
24	Molecular changes among non-volatile disinfection by-products between drinking water treatment and consumer taps. Environmental Science: Water Research and Technology, 2021, 7, 2335-2345.	1.2	5
25	Methane in Lakes: Variability in Stable Carbon Isotopic Composition and the Potential Importance of Groundwater Input. Frontiers in Earth Science, 2021, 9, .	0.8	10
26	BAWLD-CH ₄ : a comprehensive dataset of methane fluxes from boreal and arctic ecosystems. Earth System Science Data, 2021, 13, 5151-5189.	3.7	44
27	The Boreal–Arctic Wetland and Lake Dataset (BAWLD). Earth System Science Data, 2021, 13, 5127-5149.	3.7	46
28	Error Characteristics of Pan-Arctic Digital Elevation Models and Elevation Derivatives in Northern Sweden. Remote Sensing, 2021, 13, 4653.	1.8	8
29	When does temperature matter for ecosystem respiration?. Environmental Research Communications, 2021, 3, 121001.	0.9	8
30	Opposing Effects of Climate and Permafrost Thaw on CH ₄ and CO ₂ Emissions From Northern Lakes. AGU Advances, 2021, 2, e2021AV000515.	2.3	13
31	Molecular differences between water column and sediment pore water SPE-DOM in ten Swedish boreal lakes. Water Research, 2020, 170, 115320.	5.3	45
32	Large increase in diffusive greenhouse gas fluxes from subtropical shallow aquaculture ponds during the passage of typhoons. Journal of Hydrology, 2020, 583, 124643.	2.3	14
33	Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Scientific Reports, 2020, 10, 12465.	1.6	35
34	Diel variability of methane emissions from lakes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21488-21494.	3.3	50
35	Selective removal of natural organic matter during drinking water production changes the composition of disinfection by-products. Environmental Science: Water Research and Technology, 2020, 6, 779-794.	1.2	31
36	Technical note: Facilitating the use of low-cost methane (CH ₄) sensors in flux chambers – calibration, data processing, and an open-source make-it-yourself logger. Biogeosciences, 2020, 17, 3659-3667.	1.3	25

#	Article	IF	CITATIONS
37	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	3.7	1,199
38	Technical note: Greenhouse gas flux studies: an automated online system for gas emission measurements in aquatic environments. Hydrology and Earth System Sciences, 2020, 24, 3417-3430.	1.9	11
39	Photo-reactivity of dissolved organic carbon in the freshwater continuum. Aquatic Sciences, 2019, 81, 1.	0.6	14
40	Radiotracer evidence that the rhizosphere is a hot-spot for chlorination of soil organic matter. Plant and Soil, 2019, 443, 245-257.	1.8	10
41	Natural Lakes Are a Minor Clobal Source of N ₂ O to the Atmosphere. Clobal Biogeochemical Cycles, 2019, 33, 1564-1581.	1.9	40
42	Structure, function and resilience to desiccation of methanogenic microbial communities in temporarily inundated soils of the Amazon rainforest (Cunia Reserve, Rondonia). Environmental Microbiology, 2019, 21, 1702-1717.	1.8	18
43	Delineating northern peatlands using Sentinel-1 time series and terrain indices from local and regional digital elevation models. Remote Sensing of Environment, 2019, 231, 111252.	4.6	22
44	Waterworks-specific composition of drinking water disinfection by-products. Environmental Science: Water Research and Technology, 2019, 5, 861-872.	1.2	38
45	Innovative drinking water treatment techniques reduce the disinfection-induced oxidative stress and genotoxic activity. Water Research, 2019, 155, 182-192.	5.3	41
46	Methane dynamics in an estuarine brackish Cyperus malaccensis marsh: Production and porewater concentration in soils, and net emissions to the atmosphere over five years. Geoderma, 2019, 337, 132-142.	2.3	18
47	Evaluating gas chromatography with a halogen-specific detector for the determination of disinfection by-products in drinking water. Environmental Science and Pollution Research, 2019, 26, 7305-7314.	2.7	21
48	Carbon dioxide and methane emissions of Swedish lowâ€order streams—a national estimate and lessons learnt from more than a decade of observations. Limnology and Oceanography Letters, 2018, 3, 156-167.	1.6	49
49	Remote sensing of methane and nitrous oxide fluxes from waste incineration. Waste Management, 2018, 75, 319-326.	3.7	16
50	Large but variable methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter. Limnology and Oceanography, 2018, 63, 1488-1501.	1.6	121
51	Extensive processing of sediment pore water dissolved organic matter during anoxic incubation as observed by high-field mass spectrometry (FTICR-MS). Water Research, 2018, 129, 252-263.	5.3	78
52	Greenhouse gas emissions from boreal inland waters unchanged after forest harvesting. Biogeosciences, 2018, 15, 5575-5594.	1.3	16
53	The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia. Hydrology and Earth System Sciences, 2018, 22, 5281-5298.	1.9	53
54	Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method. Biogeosciences, 2018, 15, 429-445.	1.3	81

#	Article	IF	CITATIONS
55	Technical note: A simple approach for efficient collection of field reference data for calibrating remote sensing mapping of northern wetlands. Biogeosciences, 2018, 15, 1549-1557.	1.3	2
56	Abundance and l´13C values of fatty acids in lacustrine surface sediments: Relationships with in-lake methane concentrations. Quaternary Science Reviews, 2018, 191, 337-347.	1.4	6
57	Anaerobic digestion of wastewater from the production of bleached chemical thermo-mechanical pulp - higher methane production for hardwood than softwood. Journal of Chemical Technology and Biotechnology, 2017, 92, 140-151.	1.6	3
58	Approaches for hyperspectral remote flux quantification and visualization of GHGs in the environment. Remote Sensing of Environment, 2017, 191, 81-94.	4.6	25
59	Preferential sequestration of terrestrial organic matter in boreal lake sediments. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 863-874.	1.3	53
60	Spatio-temporal patterns of stream methane and carbon dioxide emissions in a hemiboreal catchment in Southwest Sweden. Scientific Reports, 2017, 7, 39729.	1.6	58
61	Spatiotemporal variability of lake pCO ₂ and CO ₂ fluxes in a hemiboreal catchment. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 30-49.	1.3	54
62	Effects of coastal marsh conversion to shrimp aquaculture ponds on CH4 and N2O emissions. Estuarine, Coastal and Shelf Science, 2017, 199, 125-131.	0.9	49
63	Influence of Multiple Environmental Factors on Organic Matter Chlorination in Podsol Soil. Environmental Science & Technology, 2017, 51, 14114-14123.	4.6	9
64	Large emissions from floodplain trees close the Amazon methane budget. Nature, 2017, 552, 230-234.	13.7	204
65	Temperature Dependence of Apparent Respiratory Quotients and Oxygen Penetration Depth in Contrasting Lake Sediments. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3076-3087.	1.3	19
66	Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements. Atmospheric Chemistry and Physics, 2017, 17, 8371-8394.	1.9	20
67	Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric Chemistry and Physics, 2017, 17, 11135-11161.	1.9	85
68	Temporal variations in methane emissions from emergent aquatic macrophytes in two boreonemoral lakes. AoB PLANTS, 2017, 9, plx029.	1.2	18
69	Chemodiversity of dissolved organic matter in the Amazon Basin. Biogeosciences, 2016, 13, 4279-4290.	1.3	53
70	Oxidative mitigation of aquatic methane emissions in large Amazonian rivers. Global Change Biology, 2016, 22, 1075-1085.	4.2	61
71	Spatioâ€ŧemporal variability of lake CH ₄ fluxes and its influence on annual whole lake emission estimates. Limnology and Oceanography, 2016, 61, S13.	1.6	133
72	Methane fluxes from a small boreal lake measured with the eddy covariance method. Limnology and Oceanography, 2016, 61, S41.	1.6	25

#	Article	IF	CITATIONS
73	Methane oxidation at the waterâ€ice interface of an iceâ€covered lake. Limnology and Oceanography, 2016, 61, S78.	1.6	35
74	Biased sampling of methane release from northern lakes: A problem for extrapolation. Geophysical Research Letters, 2016, 43, 1256-1262.	1.5	128
75	Spatiotemporal patterns in methane flux and gas transfer velocity at low wind speeds: Implications for upscaling studies on small lakes. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1456-1467.	1.3	31
76	Constraints on methane oxidation in ice overed boreal lakes. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1924-1933.	1.3	28
77	The role of sediments in the carbon budget of a small boreal lake. Limnology and Oceanography, 2016, 61, 1814-1825.	1.6	46
78	Climate-sensitive northern lakes and ponds are critical components of methane release. Nature Geoscience, 2016, 9, 99-105.	5.4	357
79	Chlorination and dechlorination rates in a forest soil — A combined modelling and experimental approach. Science of the Total Environment, 2016, 554-555, 203-210.	3.9	19
80	Floating Aquatic Macrophytes Can Substantially Offset Open Water CO2 Emissions from Tropical Floodplain Lake Ecosystems. Ecosystems, 2016, 19, 724-736.	1.6	25
81	Making methane visible. Nature Climate Change, 2016, 6, 426-430.	8.1	81
82	The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.	3.7	824
83	Temperature sensitivity of organic carbon mineralization in contrasting lake sediments. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1215-1225.	1.3	64
84	Large difference in carbon emission – burial balances between boreal and arctic lakes. Scientific Reports, 2015, 5, 14248.	1.6	27
85	Temporal control on concentration, character, and export of dissolved organic carbon in two hemiboreal headwater streams draining contrasting catchments. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 832-846.	1.3	34
86	Technical Note: Cost-efficient approaches to measure carbon dioxide (CO ₂) fluxes and concentrations in terrestrial and aquatic environments using mini loggers. Biogeosciences, 2015, 12, 3849-3859.	1.3	94
87	Technical note: drifting versus anchored flux chambers for measuring greenhouse gas emissions from running waters. Biogeosciences, 2015, 12, 7013-7024.	1.3	97
88	Spatial versus Day-To-Day Within-Lake Variability in Tropical Floodplain Lake CH4 Emissions – Developing Optimized Approaches to Representative Flux Measurements. PLoS ONE, 2015, 10, e0123319.	1.1	18
89	Anaerobic digestion of alkaline bleaching wastewater from a kraft pulp and paper mill using UASB technique. Environmental Technology (United Kingdom), 2015, 36, 1489-1498.	1.2	14
90	Methane and Carbon Dioxide Dynamics in the Paraguay River Floodplain (Pantanal) in Episodic Anoxia Events. Handbook of Environmental Chemistry, 2015, , 163-178.	0.2	6

#	Article	IF	CITATIONS
91	The stable carbon isotopic composition of <scp><i>D</i></scp> <i>aphnia</i> ephippia in small, temperate lakes reflects inâ€lake methane availability. Limnology and Oceanography, 2015, 60, 1064-1075.	1.6	26
92	Experimental Evidence of Large Changes in Terrestrial Chlorine Cycling Following Altered Tree Species Composition. Environmental Science & amp; Technology, 2015, 49, 4921-4928.	4.6	33
93	Response: Inland water greenhouse gas emissions: when to model and when to measure?. Global Change Biology, 2015, 21, 1379-1380.	4.2	1
94	An inter-regional assessment of concentrations and δ13C values of methane and dissolved inorganic carbon in small European lakes. Aquatic Sciences, 2015, 77, 667-680.	0.6	32
95	Chemosynthesis. , 2014, , .		6
96	Photochemical production of polyols arising from significant photo-transformation of dissolved organic matter in the oligotrophic surface ocean. Marine Chemistry, 2014, 163, 10-18.	0.9	50
97	Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature, 2014, 507, 488-491.	13.7	713
98	Methane and carbon dioxide emissions from inland waters in <scp>I</scp> ndia – implications for large scale greenhouse gas balances. Global Change Biology, 2014, 20, 3397-3407.	4.2	119
99	Influence of weather variables on methane and carbon dioxide flux from a shallow pond. Biogeochemistry, 2014, 119, 403-413.	1.7	93
100	Changes in Dissolved Organic Matter during the Treatment Processes of a Drinking Water Plant in Sweden and Formation of Previously Unknown Disinfection Byproducts. Environmental Science & Technology, 2014, 48, 12714-12722.	4.6	155
101	Methane emissions from Amazonian Rivers and their contribution to the global methane budget. Global Change Biology, 2014, 20, 2829-2840.	4.2	110
102	Taxon-specific δ13C analysis of chitinous invertebrate remains in sediments from Strandsjön, Sweden. Journal of Paleolimnology, 2014, 52, 95-105.	0.8	22
103	Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nature Climate Change, 2014, 4, 467-470.	8.1	155
104	Olivine alteration and H2 production in carbonate-rich, low temperature aqueous environments. Planetary and Space Science, 2014, 96, 51-61.	0.9	51
105	Comparison of floating chamber and eddy covariance measurements of lake greenhouse gas fluxes. Biogeosciences, 2014, 11, 4225-4233.	1.3	66
106	Energy input is primary controller of methane bubbling in subarctic lakes. Geophysical Research Letters, 2014, 41, 555-560.	1.5	96
107	Possible roles of reactive chlorine II: assessing biotic chlorination as a way for organisms to handle oxygen stress. Environmental Microbiology, 2013, 15, 991-1000.	1.8	23
108	Automated Flux Chamber for Investigating Gas Flux at Water–Air Interfaces. Environmental Science & Technology, 2013, 47, 968-975.	4.6	38

#	Article	IF	CITATIONS
109	Spatial heterogeneity and lake morphology affect diffusive greenhouse gas emission estimates of lakes. Geophysical Research Letters, 2013, 40, 5752-5756.	1.5	86
110	Evidence for past variations in methane availability in a Siberian thermokarst lake based on δ13C of chitinous invertebrate remains. Quaternary Science Reviews, 2013, 66, 74-84.	1.4	49
111	Determination of the piston velocity for waterâ€air interfaces using flux chambers, acoustic Doppler velocimetry, and IR imaging of the water surface. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 770-782.	1.3	85
112	Chlorine Isotope Effects and Composition of Naturally Produced Organochlorines from Chloroperoxidases, Flavin-Dependent Halogenases, and in Forest Soil. Environmental Science & Technology, 2013, 47, 6864-6871.	4.6	28
113	Simultaneous measurements of dark carbon fixation and bacterial production in lake sediment. Limnology and Oceanography: Methods, 2013, 11, 298-303.	1.0	6
114	Multiyear measurements of ebullitive methane flux from three subarctic lakes. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1307-1321.	1.3	143
115	Depth-dependent molecular composition and photo-reactivity of dissolved organic matter in a boreal lake under winter and summer conditions. Biogeosciences, 2013, 10, 6945-6956.	1.3	73
116	Dark Carbon Fixation: An Important Process in Lake Sediments. PLoS ONE, 2013, 8, e65813.	1.1	38
117	Constrained microbial processing of allochthonous organic carbon in boreal lake sediments. Limnology and Oceanography, 2012, 57, 163-175.	1.6	94
118	Organic Matter Chlorination Rates in Different Boreal Soils: The Role of Soil Organic Matter Content. Environmental Science & Technology, 2012, 46, 1504-1510.	4.6	37
119	Transformation of Chloride to Organic Chlorine in Terrestrial Environments: Variability, Extent, and Implications. Critical Reviews in Environmental Science and Technology, 2012, 42, 2526-2545.	6.6	27
120	Methane Carbon Supports Aquatic Food Webs to the Fish Level. PLoS ONE, 2012, 7, e42723.	1.1	81
121	The European land and inland water CO ₂ , CO, CH ₄ and N ₂ O balance between 2001 and 2005. Biogeosciences, 2012, 9, 3357-3380.	1.3	53
122	Relationship between δ ¹³ C of chironomid remains and methane flux in Swedish lakes. Freshwater Biology, 2012, 57, 166-177.	1.2	30
123	Chloride and Organic Chlorine in Forest Soils: Storage, Residence Times, And Influence of Ecological Conditions. Environmental Science & Technology, 2011, 45, 7202-7208.	4.6	49
124	Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geoscience, 2011, 4, 593-596.	5.4	600
125	Freshwater Methane Emissions Offset the Continental Carbon Sink. Science, 2011, 331, 50-50.	6.0	1,159
126	Bubbles trapped in arctic lake ice: Potential implications for methane emissions. Journal of Geophysical Research, 2011, 116, .	3.3	54

#	Article	IF	CITATIONS
127	Formation of H2 and CH4by weathering of olivine at temperatures between 30 and 70°C. Geochemical Transactions, 2011, 12, 6.	1.8	91
128	Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry, 2010, 100, 185-196.	1.7	242
129	The European carbon balance. Part 4: integration of carbon and other traceâ€gas fluxes. Global Change Biology, 2010, 16, 1451-1469.	4.2	157
130	Temperature-controlled organic carbon mineralization in lake sediments. Nature, 2010, 466, 478-481.	13.7	460
131	Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences, 2010, 7, 95-108.	1.3	118
132	Multiple approaches to estimating airâ€water gas exchange in small lakes. Limnology and Oceanography: Methods, 2010, 8, 285-293.	1.0	171
133	Mechanism of antibacterial activity of the white-rot fungus <i>Hypholoma fasciculare</i> colonizing wood. Canadian Journal of Microbiology, 2010, 56, 380-388.	0.8	32
134	Methane Emissions from Pantanal, South America, during the Low Water Season: Toward More Comprehensive Sampling. Environmental Science & Technology, 2010, 44, 5450-5455.	4.6	178
135	The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Global Change Biology, 2009, 16, 2399-2399.	4.2	5
136	Possible role of reactive chlorine in microbial antagonism and organic matter chlorination in terrestrial environments. Environmental Microbiology, 2009, 11, 1330-1339.	1.8	43
137	Temperature Sensitivity Indicates That Chlorination of Organic Matter in Forest Soil Is Primarily Biotic. Environmental Science & Technology, 2009, 43, 3569-3573.	4.6	61
138	Methane. , 2009, , 783-805.		72
139	Chemosynthesis. , 2009, , 211-225.		7
140	Microbially induced flocculation of allochthonous dissolved organic carbon in lakes. Limnology and Oceanography, 2009, 54, 1811-1818.	1.6	48
141	Fates of methane from different lake habitats: Connecting wholeâ€lake budgets and CH ₄ emissions. Journal of Geophysical Research, 2008, 113, .	3.3	392
142	Total hydrocarbon flux dynamics at a subarctic mire in northern Sweden. Journal of Geophysical Research, 2008, 113, .	3.3	41
143	Linking allochthonous dissolved organic matter and boreal lake sediment carbon sequestration: The role of lightâ€mediated flocculation. Limnology and Oceanography, 2008, 53, 2416-2426.	1.6	114
144	Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter. Geochimica Et Cosmochimica Acta, 2007, 71, 3182-3192.	1.6	119

#	Article	IF	CITATIONS
145	A chlorineâ€36 and carbonâ€14 study of the role of chlorine in the forest ecosystem. Journal of Labelled Compounds and Radiopharmaceuticals, 2007, 50, 437-439.	0.5	8
146	Chlorine transport in a small catchment in southeast Sweden during two years. Biogeochemistry, 2007, 82, 181-199.	1.7	31
147	Chloride Retention and Release in a Boreal Forest Soil:Â Effects of Soil Water Residence Time and Nitrogen and Chloride Loads. Environmental Science & Technology, 2006, 40, 2977-2982.	4.6	72
148	Mineralisation of organic matter in coastal sediments at different frequency and duration of resuspension. Estuarine, Coastal and Shelf Science, 2006, 70, 317-325.	0.9	76
149	Electrospray mass spectrometry to study lake water DOM and effects of microbial degradation. International Journal of Environmental Analytical Chemistry, 2005, 85, 15-27.	1.8	7
150	Abundance, Activity, and Community Structure of Pelagic Methane-Oxidizing Bacteria in Temperate Lakes. Applied and Environmental Microbiology, 2005, 71, 6746-6752.	1.4	117
151	ECOSYSTEM SUBSIDIES: TERRESTRIAL SUPPORT OF AQUATIC FOOD WEBS FROM13C ADDITION TO CONTRASTING LAKES. Ecology, 2005, 86, 2737-2750.	1.5	341
152	Degradation of dissolved organic matter in oxic and anoxic lake water. Limnology and Oceanography, 2004, 49, 109-116.	1.6	133
153	Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature, 2004, 427, 240-243.	13.7	497
154	Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	890
155	Simultaneous Measurements of Organic Carbon Mineralization and Bacterial Production in Oxic and Anoxic Lake Sediments. Microbial Ecology, 2003, 46, 73-82.	1.4	52
156	METHANE AS A SOURCE OF CARBON AND ENERGY FOR LAKE PELAGIC FOOD WEBS. Ecology, 2003, 84, 969-981.	1.5	175
157	Measurement of Methane Oxidation in Lakes:Â A Comparison of Methods. Environmental Science & Technology, 2002, 36, 3354-3361.	4.6	204
158	The Leucine Incorporation Method Estimates Bacterial Growth Equally Well in Both Oxic and Anoxic Lake Waters. Applied and Environmental Microbiology, 2001, 67, 2916-2921.	1.4	36
159	Similar bacterial growth on dissolved organic matter in anoxic and oxic lake water. Aquatic Microbial Ecology, 2001, 24, 41-49.	0.9	26
160	Higher late summer methane emission from central than northern European lakes. Journal of Limnology, 0, , .	0.3	7