Maureen H Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7199062/publications.pdf

Version: 2024-02-01

42 papers

1,914 citations

304701 22 h-index

42 g-index

42 all docs 42 docs citations

42 times ranked 3058 citing authors

#	Article	IF	CITATIONS
1	Stabilization of gamma sulfur at room temperature to enable the use of carbonate electrolyte in Li-S batteries. Communications Chemistry, 2022, 5, .	4.5	18
2	Deeper learning in electrocatalysis: realizing opportunities and addressing challenges. Current Opinion in Chemical Engineering, 2022, 36, 100824.	7.8	6
3	A reaction engineering approach to non-aqueous battery lifetime. Joule, 2021, 5, 551-563.	24.0	13
4	Asymmetric Interdigitated Electrodes for Amperometric Detection of Soluble Products. Journal of the Electrochemical Society, 2021, 168, 057519.	2.9	4
5	On the relationship between potential of zero charge and solvent dynamics in the reversible hydrogen electrode. Journal of Catalysis, 2021, 398, 161-170.	6.2	7
6	Performance and pathways of electrochemical cyclohexane oxidation. Current Opinion in Electrochemistry, 2021, 30, 100791.	4.8	5
7	<scp>Gdâ€Niâ€Sbâ€SnO₂</scp> electrocatalysts for active and selective ozone production. AICHE Journal, 2021, 67, e17486.	3.6	8
8	Characterization of a Sulfonated Poly(Ionic Liquid) Block Copolymer as an Ionomer for Proton Exchange Membrane Fuel Cells using Rotating Disk Electrode. Journal of the Electrochemical Society, 2021, 168, 124511.	2.9	6
9	How Transition Metals Enable Electron Transfer through the SEI: Part I. Experiments and Butler-Volmer Modeling. Journal of the Electrochemical Society, 2020, 167, 013502.	2.9	17
10	How Transition Metals Enable Electron Transfer through the SEI: Part II. Redox-Cycling Mechanism Model and Experiment. Journal of the Electrochemical Society, 2020, 167, 013503.	2.9	11
11	Correlating Processing Conditions to Short- and Long-Range Order in Coating and Drying Lithium-lon Batteries. ACS Applied Energy Materials, 2020, 3, 11681-11689.	5.1	23
12	"Beyond Adsorption―Descriptors in Hydrogen Electrocatalysis. ACS Catalysis, 2020, 10, 14747-14762.	11.2	95
13	Chemical Compatibility of Battery Electrolytes with Rapid Prototyping Materials and Adhesives. Industrial & Engineering Chemistry Research, 2020, 59, 15948-15954.	3.7	1
14	Caffeinated Interfaces Enhance Alkaline Hydrogen Electrocatalysis. ACS Catalysis, 2020, 10, 6798-6802.	11.2	20
15	Quantifying Environmental Effects on the Solution and Solid-State Stability of a Phenothiazine Radical Cation. Chemistry of Materials, 2020, 32, 3007-3017.	6.7	26
16	Kinetic Isotope Effects Quantify pH-Sensitive Water Dynamics at the Pt Electrode Interface. Journal of Physical Chemistry Letters, 2020, 11, 2308-2313.	4.6	43
17	Modifying the Electrocatalyst–Ionomer Interface via Sulfonated Poly(ionic liquid) Block Copolymers to Enable High-Performance Polymer Electrolyte Fuel Cells. ACS Energy Letters, 2020, 5, 1726-1731.	17.4	50
18	Review: mechanisms and consequences of chemical cross-talk in advanced Li-ion batteries. JPhys Energy, 2020, 2, 032002.	5.3	54

#	Article	IF	CITATIONS
19	Exploiting dynamic water structure and structural sensitivity for nanoscale electrocatalyst design. Nano Energy, 2019, 64, 103963.	16.0	30
20	Reliable Reference Electrodes for Nonaqueous Sodium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A3260-A3264.	2.9	22
21	Electroactive decomposition products cause erroneous intercalation signals in sodium-ion batteries. Electrochemistry Communications, 2019, 100, 70-73.	4.7	10
22	Short-range contacts govern the performance of industry-relevant battery cathodes. Journal of Power Sources, 2018, 387, 49-56.	7.8	43
23	Ni- and Sb-Doped SnO ₂ Electrocatalysts with High Current Efficiency for Ozone Production via Electrodeposited Nanostructures. Journal of the Electrochemical Society, 2018, 165, E833-E840.	2.9	13
24	Determining the Viability of Hydroxide-Mediated Bifunctional HER/HOR Mechanisms through Single-Crystal Voltammetry and Microkinetic Modeling. Journal of the Electrochemical Society, 2018, 165, J3209-J3221.	2.9	55
25	Three-Dimensional Visualization of Conductive Domains in Battery Electrodes with Contrast-Enhancing Nanoparticles. ACS Applied Energy Materials, 2018, 1, 4479-4484.	5.1	20
26	Molecular Probes Reveal Chemical Selectivity of the Solid–Electrolyte Interphase. Journal of Physical Chemistry C, 2018, 122, 20632-20641.	3.1	29
27	Pathways to electrochemical solar-hydrogen technologies. Energy and Environmental Science, 2018, 11, 2768-2783.	30.8	238
28	Direct observation of active material interactions in flowable electrodes using X-ray tomography. Faraday Discussions, 2017, 199, 511-524.	3.2	50
29	Top-down fabrication of fluorine-doped tin oxide nanopillar substrates for solar water splitting. RSC Advances, 2017, 7, 28350-28357.	3.6	9
30	Adsorbed Hydroxide Does Not Participate in the Volmer Step of Alkaline Hydrogen Electrocatalysis. ACS Catalysis, 2017, 7, 8314-8319.	11.2	92
31	The Impotence of Non-Brownian Particles on the Gel Transition of Colloidal Suspensions. Polymers, 2017, 9, 461.	4.5	7
32	Polymerized ionic liquid diblock copolymer as solid-state electrolyte and separator in lithium-ion battery. Polymer, 2016, 101, 311-318.	3.8	43
33	Nickel–silver alloy electrocatalysts for hydrogen evolution and oxidation in an alkaline electrolyte. Physical Chemistry Chemical Physics, 2014, 16, 19250.	2.8	101
34	A carbon-free, precious-metal-free, high-performance O2 electrode for regenerative fuel cells and metal–air batteries. Energy and Environmental Science, 2014, 7, 2017.	30.8	140
35	Transient Characterization of Solid-Electrolyte-Interphase Using Ferrocene. Journal of the Electrochemical Society, 2012, 159, A281-A289.	2.9	33
36	Effect of Graphite Orientation and Lithium Salt on Electronic Passivation of Highly Oriented Pyrolytic Graphite. Journal of the Electrochemical Society, 2012, 159, A634-A641.	2.9	54

3

#	Article	IF	CITATION
37	Why is the Solid-Electrolyte-Interphase Selective? Through-Film Ferrocenium Reduction on Highly Oriented Pyrolytic Graphite. Journal of the Electrochemical Society, 2012, 159, A1922-A1927.	2.9	32
38	Experimental and Theoretical Investigation of Solid-Electrolyte-Interphase Formation Mechanisms on Glassy Carbon. Journal of the Electrochemical Society, 2012, 159, A1775-A1785.	2.9	74
39	Effect of molecular weight on conductivity of polymer electrolytes. Solid State Ionics, 2011, 203, 18-21.	2.7	155
40	Electrochemical Characterization of SEI-Type Passivating Films Using Redox Shuttles. Journal of the Electrochemical Society, 2011, 158, A530-A536.	2.9	56
41	Electrochemical Characterization of SEI-Type Passivating Films Using Redox Shuttles. ECS Transactions, 2010, 33, 15-31.	0.5	1
42	Two-Dimensional Modeling of Lithium Deposition during Cell Charging. Journal of the Electrochemical Society, 2009, 156, A390.	2.9	200