
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/719892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Traitâ€mediated responses to aridity and experimental drought by springtail communities across Europe. Functional Ecology, 2023, 37, 44-56.	1.7	3
2	Soil quality and fertility in sustainable agriculture, with a contribution to the biological classification of agricultural soils. Soil Use and Management, 2022, 38, 1085-1112.	2.6	20
3	Humus: Dark side of life or intractable "aether�. Pedosphere, 2022, 32, 660-664.	2.1	2
4	A Standardized Morpho-Functional Classification of the Planet's Humipedons. Soil Systems, 2022, 6, 59.	1.0	7
5	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 2021, 8, 136.	2.4	29
6	Communities, ecosystem engineers, and functional domains. Ecological Research, 2021, 36, 766-777.	0.7	1
7	Responses of Collembola communities to mixtures of wheat varieties: A trait-based approach. Pedobiologia, 2021, 87-88, 150755.	0.5	3
8	Combined forest and soil management after a catastrophic event. Journal of Mountain Science, 2020, 17, 2459-2484.	0.8	4
9	Move or change, an eco-evolutionary dilemma: The case of Collembola. Pedobiologia, 2020, 79, 150625.	0.5	11
10	Global distribution of earthworm diversity. Science, 2019, 366, 480-485.	6.0	248
11	Fast attrition of springtail communities by experimental drought and richness–decomposition relationships across Europe. Global Change Biology, 2019, 25, 2727-2738.	4.2	23
12	Chemical communication in springtails: a review of facts and perspectives. Biology and Fertility of Soils, 2019, 55, 425-438.	2.3	12
13	Habitat diversity associated to island size and environmental filtering control the species richness of rockâ€savanna plants in neotropical inselbergs. Ecography, 2019, 42, 1536-1547.	2.1	18
14	<i>TerrHum</i> : An iOS Application for Classifying Terrestrial Humipedons and Some Considerations about Soil Classification. Soil Science Society of America Journal, 2019, 83, S42.	1.2	5
15	Environmental hazard assessment by the Ecoscore system to discriminate PAH-polluted soils. Environmental Science and Pollution Research, 2018, 25, 26747-26756.	2.7	5
16	Humusica 2, article 11: Histic humus systems and forms–Epihisto intergrades and dynamics. Applied Soil Ecology, 2018, 122, 162-169.	2.1	1
17	Humusica 2, article 12: Aqueous humipedons – Tidal and subtidal humus systems and forms. Applied Soil Ecology, 2018, 122, 170-180.	2.1	5
18	Humusica 1, article 3: Essential bases – Quick look at the classification. Applied Soil Ecology, 2018, 122, 42-55.	2.1	5

#	Article	IF	CITATIONS
19	Humusica 1, Article 6: Terrestrial humus systems and forms – Hydro intergrades. Applied Soil Ecology, 2018, 122, 87-91.	2.1	3
20	Humusica 1, article 7: Terrestrial humus systems and forms – Field practice and sampling problems. Applied Soil Ecology, 2018, 122, 92-102.	2.1	11
21	Humusica 2, Article 14: Anthropogenic soils and humus systems, comparing classification systems. Applied Soil Ecology, 2018, 122, 200-203.	2.1	7
22	Humusica 1, article 4: Terrestrial humus systems and forms — Specific terms and diagnostic horizons. Applied Soil Ecology, 2018, 122, 56-74.	2.1	33
23	Humusica 2, Article 9: Histic humus systems and forms—Specific terms, diagnostic horizons and overview. Applied Soil Ecology, 2018, 122, 148-153.	2.1	3
24	Humusica 2, article 10: Histic humus systems and forms – Key of classification. Applied Soil Ecology, 2018, 122, 154-161.	2.1	3
25	Humusica 1, article 2: Essential bases—Functional considerations. Applied Soil Ecology, 2018, 122, 22-41.	2.1	18
26	Humusica 2, article 18: Techno humus systems and global change – Greenhouse effect, soil and agriculture. Applied Soil Ecology, 2018, 122, 254-270.	2.1	5
27	Humusica 2, article 16: Techno humus systems and recycling of waste. Applied Soil Ecology, 2018, 122, 220-236.	2.1	6
28	Humusica 1, article 8: Terrestrial humus systems and forms – Biological activity and soil aggregates, space-time dynamics. Applied Soil Ecology, 2018, 122, 103-137.	2.1	34
29	Humusica 1, article 5: Terrestrial humus systems and forms — Keys of classification of humus systems and forms. Applied Soil Ecology, 2018, 122, 75-86.	2.1	45
30	Humusica 2, article 19: Techno humus systems and global change–conservation agriculture and 4/1000 proposal. Applied Soil Ecology, 2018, 122, 271-296.	2.1	15
31	Humusica 2, article 13: Para humus systems and forms. Applied Soil Ecology, 2018, 122, 181-199.	2.1	12
32	Humusica 2, article 17: techno humus systems and global change â^' three crucial questions. Applied Soil Ecology, 2018, 122, 237-253.	2.1	7
33	Humusica 1, article 1: Essential bases – Vocabulary. Applied Soil Ecology, 2018, 122, 10-21.	2.1	16
34	Humusica 2, Article 15: Agro humus systems and forms. Applied Soil Ecology, 2018, 122, 204-219.	2.1	8
35	Microscopy in addition to chemical analyses and ecotoxicological assays for the environmental hazard assessment of coal tar-polluted soils. Environmental Science and Pollution Research, 2018, 25, 2594-2602.	2.7	2
36	Humusica: Soil biodiversity and global change. Bulletin of Geography, Physical Geography Series, 2018, 14, 15-36.	0.3	1

#	Article	IF	CITATIONS
37	From inselberg to inselberg: Floristic patterns across scales in French Guiana (South America). Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 229, 147-158.	0.6	18
38	The â€~terril' effect: Coal mine spoil tips select for collembolan functional traits in post-mining landscapes of northern France. Applied Soil Ecology, 2017, 121, 90-101.	2.1	7
39	Hierarchy and Complexity. BioScience, 2017, 67, 672-674.	2.2	Ο
40	Ancestrality and evolution of trait syndromes in finches (Fringillidae). Ecology and Evolution, 2017, 7, 9935-9953.	0.8	3
41	The soil as an ecosystem. Biology and Fertility of Soils, 2015, 51, 645-648.	2.3	47
42	Soil Macrofaunal Communities are Heterogeneous in Heathlands with Different Grazing Intensity. Pedosphere, 2015, 25, 524-533.	2.1	6
43	Collembolan preferences for soil and microclimate in forest andÂpasture communities. Soil Biology and Biochemistry, 2015, 86, 181-192.	4.2	43
44	A Thesaurus for Soil Invertebrate Trait-Based Approaches. PLoS ONE, 2014, 9, e108985.	1.1	53
45	More Philosophy Makes Better Science. BioScience, 2014, 64, 253-254.	2.2	0
46	Species living in harsh environments have low clade rank and are localized on former Laurasian continents: a case study of <i>Willemia</i> (Collembola). Journal of Biogeography, 2014, 41, 353-365.	1.4	3
47	The impact of parent material, climate, soil type and vegetation on Venetian forest humus forms: A direct gradient approach. Geoderma, 2014, 226-227, 290-299.	2.3	44
48	Effect of habitat spatiotemporal structure on collembolan diversity. Pedobiologia, 2014, 57, 103-117.	0.5	32
49	Linking species, traits and habitat characteristics of Collembola at European scale. Soil Biology and Biochemistry, 2014, 75, 73-85.	4.2	120
50	Current use of and future needs for soil invertebrate functional traits in community ecology. Basic and Applied Ecology, 2014, 15, 194-206.	1.2	157
51	A new method to measure allyl isothiocyanate (AITC) concentrations in mustard—Comparison of AITC and commercial mustard solutions as earthworm extractants. Applied Soil Ecology, 2014, 80, 1-5.	2.1	17
52	Foraging patterns of soil springtails are impacted by food resources. Applied Soil Ecology, 2014, 82, 72-77.	2.1	29
53	The impact of agricultural practices on soil biota: A regional study. Soil Biology and Biochemistry, 2013, 67, 271-284.	4.2	116
54	A proposal for including humus forms in the World Reference Base for Soil Resources (WRB-FAO). Geoderma, 2013, 192, 286-294.	2.3	68

#	Article	IF	CITATIONS
55	Reduction of pesticide use can increase earthworm populations in wheat crops in a European temperate region. Agriculture, Ecosystems and Environment, 2013, 181, 223-230.	2.5	54
56	Plant–soil feedbacks mediated by humus forms: A review. Soil Biology and Biochemistry, 2013, 57, 1048-1060.	4.2	132
57	Crop genetic diversity benefits farmland biodiversity in cultivated fields. Agriculture, Ecosystems and Environment, 2013, 171, 25-32.	2.5	44
58	Monkey and dung beetle activities influence soil seed bank structure. Ecological Research, 2013, 28, 93-102.	0.7	11
59	Spatial and taxonomic correlates of species and species trait assemblages in soil invertebrate communities. Pedobiologia, 2013, 56, 129-136.	0.5	22
60	Disturbances, organisms and ecosystems: a global change perspective. Ecology and Evolution, 2013, 3, 1113-1124.	0.8	19
61	Influence of the spatial variability of soil type and tree colonization on the dynamics of Molinia caerulea (L.) Moench in managed heathland. Ecological Complexity, 2012, 11, 118-125.	1.4	7
62	Species traits and habitats in springtail communities: A regional scale study. Pedobiologia, 2012, 55, 295-301.	0.5	49
63	Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environmental Pollution, 2012, 165, 11-17.	3.7	113
64	Metal immobilization and soil amendment efficiency at a contaminated sediment landfill site: A field study focusing on plants, springtails, and bacteria. Environmental Pollution, 2012, 169, 1-11.	3.7	46
65	Geology and climate conditions affect more humus forms than forest canopies at large scale in temperate forests. Geoderma, 2011, 162, 187-195.	2.3	68
66	A European morpho-functional classification of humus forms. Geoderma, 2011, 164, 138-145.	2.3	140
67	Does moder development along a pure beech (Fagus sylvatica L.) chronosequence result from changes in litter production or in decomposition rates?. Soil Biology and Biochemistry, 2011, 43, 1490-1497.	4.2	29
68	Early degradation of plant alkanes in soils: A litterbag experiment using 13C-labelled leaves. Soil Biology and Biochemistry, 2011, 43, 2222-2228.	4.2	59
69	Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils. Environmental Pollution, 2011, 159, 2974-2981.	3.7	33
70	The impact of red howler monkey latrines on the distribution of main nutrients and on topsoil profiles in a tropical rain forest. Austral Ecology, 2010, 35, 549-559.	0.7	23
71	Decreasing fallow duration in tropical slash-and-burn agriculture alters soil macroinvertebrate diversity: A case study in southern French Guiana. Agriculture, Ecosystems and Environment, 2010, 135, 148-154.	2.5	34
72	Does the invasive species Reynoutria japonica have an impact on soil and flora in urban wastelands?. Biological Invasions, 2010, 12, 1709-1719.	1.2	67

#	Article	IF	CITATIONS
73	Assessment of movement patterns in Folsomia candida (Hexapoda: Collembola) in the presence of food. Soil Biology and Biochemistry, 2010, 42, 657-659.	4.2	24
74	Comparison of solid-phase bioassays and ecoscores to evaluate the toxicity of contaminated soils. Environmental Pollution, 2010, 158, 2640-2647.	3.7	35
75	Local and regional trends in the ground vegetation of beech forests. Flora: Morphology, Distribution, Functional Ecology of Plants, 2010, 205, 484-498.	0.6	17
76	Stability of plant communities along a tropical inselberg ecotone in French Guiana (South America). Flora: Morphology, Distribution, Functional Ecology of Plants, 2010, 205, 682-694.	0.6	15
77	Nested variation of soil arthropod communities in isolated patches of vegetation on a rocky outcrop. Soil Biology and Biochemistry, 2009, 41, 323-329.	4.2	6
78	Experimental assessment of habitat preference and dispersal ability of soil springtails. Soil Biology and Biochemistry, 2009, 41, 1596-1604.	4.2	60
79	A 10â€year decrease in plant species richness on a neotropical inselberg: detrimental effects of global warming?. Global Change Biology, 2009, 15, 2360-2374.	4.2	29
80	Tree influence on soil biological activity: What can be inferred from the optical examination of humus profiles?. European Journal of Soil Biology, 2009, 45, 290-300.	1.4	12
81	Successional patterns on tropical inselbergs: A case study on the Nouragues inselberg (French) Tj ETQq1 1 0.784	314 rgBT	Oyerlock 10
82	The latrine effect: impact of howler monkeys on the distribution of small seeds in a tropical rain-forest soil. Journal of Tropical Ecology, 2009, 25, 239-248.	0.5	20
83	Effets des amendements sur le fonctionnement biologique des sols forestiers : mieux comprendre le rÃ1e de la méso- et de la macrofaune dans l'évolution des humus. Revue Forestiere Francaise, 2009, , .	0.0	0
84	Litter N-content influences soil millipede abundance, species richness and feeding preferences in a semi-evergreen dry forest of Guadeloupe (Lesser Antilles). Biology and Fertility of Soils, 2008, 45, 93-98.	2.3	24
85	Opposite responses of vascular plant and moss communities to changes in humus form, as expressed by the Humus Index. Journal of Vegetation Science, 2008, 19, 645-652.	1.1	20
86	Short-term responses of two collembolan communities after abrupt environmental perturbation: A field experimental approach. Pedobiologia, 2008, 52, 19-28.	0.5	9
87	Humus profiles and successional development in a rock savanna (Nouragues inselberg, French) Tj ETQq1 1 0.784 85-95.	314 rgBT , 0.5	Overlock 10 15

#	Article	IF	CITATIONS
91	Soil fauna abundance and diversity in a secondary semi-evergreen forest in Guadeloupe (Lesser) Tj ETQq1 1 269-276.	0.784314 rgBT 2.3	/Overlock 1 39
92	Formol et fixationÂ: nouvelle donne, nouvelles approches…. La Lettre De L'OCIM, 2007, , 23-29.	0.0	0
93	Humus Index as an indicator of forest stand and soil properties. Forest Ecology and Management, 2006, 233, 165-175.	1.4	56
94	An optical analysis of the organic soil over an old petroleum tar deposit. Geoderma, 2006, 134, 17-23.	2.3	3
95	Humus profiles under main vegetation types in a rock savanna (Nouragues inselberg, French Guiana). Geoderma, 2006, 136, 819-829.	2.3	9
96	Avoidance bio-assays may help to test the ecological significance of soil pollution. Environmental Pollution, 2006, 140, 173-180.	3.7	53
97	Avoidance of low doses of naphthalene by Collembola. Environmental Pollution, 2006, 139, 451-454.	3.7	13
98	The use of directional traps for the assessment of short-term phenanthrene effects upon soil springtail communities. Environmental Pollution, 2006, 140, 364-370.	3.7	3
99	Changes in Collembola richness and diversity along a gradient of land-use intensity: A pan European study. Pedobiologia, 2006, 50, 147-156.	0.5	68
100	Humus components and biogenic structures under tropical slash-and-burn agriculture. European Journal of Soil Science, 2006, 57, 269-278.	1.8	27
101	Biological Diversity and Function in Soils - Edited by R.D. Bardgett, M.B. Usher & D.W. Hopkins. European Journal of Soil Science, 2006, 57, 924-925.	1.8	0
102	Decreased biodiversity in soil springtail communities: the importance of dispersal and landuse history in heterogeneous landscapes. Soil Biology and Biochemistry, 2006, 38, 1158-1161.	4.2	104
103	Ingestion of charcoal by the Amazonian earthworm Pontoscolex corethrurus: A potential for tropical soil fertility. Soil Biology and Biochemistry, 2006, 38, 2008-2009.	4.2	47
104	Use of an avoidance test for the assessment of microbial degradation of PAHs. Soil Biology and Biochemistry, 2006, 38, 2199-2204.	4.2	12
105	Small-scale response of plant species to land-use intensification. Agriculture, Ecosystems and Environment, 2005, 105, 283-290.	2.5	51
106	Earthworms and collembola relationships: effects of predatory centipedes and humus forms. Soil Biology and Biochemistry, 2005, 37, 487-495.	4.2	32
107	Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics. Biology and Fertility of Soils, 2005, 41, 15-21.	2.3	101
108	Emergent properties from organisms to ecosystems: towards a realistic approach. Biological Reviews, 2005, 80, 403.	4.7	82

#	Article	IF	CITATIONS
109	Species assemblages and diets of Collembola in the organic matter accumulated over an old tar deposit. European Journal of Soil Biology, 2005, 41, 39-44.	1.4	8
110	Charcoal consumption and casting activity by Pontoscolex corethrurus (Glossoscolecidae). Applied Soil Ecology, 2005, 28, 217-224.	2.1	77
111	Soil invertebrate activity in biological crusts on tropical inselbergs. European Journal of Soil Science, 2004, 55, 539-549.	1.8	19
112	Origin of the nitrogen assimilated by soil fauna living in decomposing beech litter. Soil Biology and Biochemistry, 2004, 36, 1861-1872.	4.2	32
113	Soil arthropods in a developmental succession on the Nouragues inselberg (French Guiana). Biology and Fertility of Soils, 2004, 40, 119-127.	2.3	9
114	New Pigments from the Terrestrial CyanobacteriumScytonemasp. Collected on the Mitaraka Inselberg, French Guyana. Journal of Natural Products, 2004, 67, 678-681.	1.5	81
115	Are acid-tolerant Collembola able to colonise metal-polluted soil?. Applied Soil Ecology, 2004, 26, 219-231.	2.1	18
116	Acid-tolerant Collembola cannot colonize metal-polluted soils at neutral pH. Applied Soil Ecology, 2004, 26, 201-208.	2.1	4
117	Effects of Earthworms on Soil Organic Matter and Nutrient Dynamics at a Landscape Scale over Decades. , 2004, , 145-160.		10
118	Fungal colonization of phyllosphere and litter of Quercus rotundifolia Lam. in a holm oak forest (High Atlas, Morocco). Biology and Fertility of Soils, 2003, 39, 30-36.	2.3	22
119	Collembolan communities as bioindicators of land use intensification. Soil Biology and Biochemistry, 2003, 35, 813-826.	4.2	123
120	Climatic effects on soil trophic networks and the resulting humus profiles in holm oak (Quercus) Tj ETQq0 0 0 rg Journal of Soil Science, 2003, 54, 767-777.	BT /Overlo 1.8	ck 10 Tf 50 3 27
121	Humus forms in two secondary semi-evergreen tropical forests. European Journal of Soil Science, 2003, 54, 17-24.	1.8	21
122	Shrub vegetation on tropical granitic inselbergs in French Guiana. Journal of Vegetation Science, 2003, 14, 645-652.	1.1	38
123	Soil animal communities in holm oak forests: influence of horizon, altitude and year. European Journal of Soil Biology, 2003, 39, 197-207.	1.4	38
124	Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biology and Biochemistry, 2003, 35, 935-945.	4.2	283
125	Changes in species assemblages and diets of Collembola along a gradient of metal pollution. Applied Soil Ecology, 2003, 22, 127-138.	2.1	60

Burrowing activity of the geophagous earthworm Pontoscolex corethrurus (Oligochaeta:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{50}{73}$ 62 Td (Overlock 10 Tf $\frac{50}{73}$ 73 Td (Ov

#	Article	IF	CITATIONS
127	Ionic identity of pore water influences pH preference in Collembola. Soil Biology and Biochemistry, 2002, 34, 1663-1667.	4.2	14
128	Effects of some physical factors and agricultural practices on Collembola in a multiple cropping programme in West Bengal (India). European Journal of Soil Biology, 2002, 38, 111-117.	1.4	19
129	Influence of ground cover on earthworm communities in an unmanaged beech forest: linear gradient studies. European Journal of Soil Biology, 2002, 38, 213-224.	1.4	24
130	Interaction between humus form and herbicide toxicity to Collembola (Hexapoda). Applied Soil Ecology, 2002, 20, 239-253.	2.1	9
131	Colonization of heavy metal-polluted soils by collembola: preliminary experiments in compartmented boxes. Applied Soil Ecology, 2002, 21, 91-106.	2.1	25
132	Humus Index. Soil Science Society of America Journal, 2002, 66, 1996-2001.	1.2	64
133	Leaf decomposition in two semi-evergreen tropical forests: influence of litter quality. Biology and Fertility of Soils, 2002, 35, 247-252.	2.3	131
134	Effect of organic manure and the endogeic earthworm Pontoscolex corethrurus (Oligochaeta:) Tj ETQq0 0 0 rgB	T /Qverloc	k 10 Tf 50 46
135	Humus forms and metal pollution in soil. European Journal of Soil Science, 2002, 53, 529-540.	1.8	48
136	The influence of altitude on the distribution of subterranean organs and humus components in <i>Vaccinium myrtillus</i> carpets. Journal of Vegetation Science, 2002, 13, 17-26.	1.1	14
137	Changes in the composition of humus profiles near the trunk base of an oak tree (Quercus petraea) Tj ETQq1 1 ().784314 1.4	rgBT_/Overlo
138	The heterogeneity of humus components in a virgin beech forest. European Journal of Soil Biology, 2001, 37, 117-124.	1.4	5
139	Does soil acidity explain altitudinal sequences in collembolan communities?. Soil Biology and Biochemistry, 2001, 33, 381-393.	4.2	89
140	Earthworm excreta attract soil springtails: laboratory experiments on Heteromurus Nitidus (Collembola: Entomobryidae). Soil Biology and Biochemistry, 2001, 33, 1959-1969.	4.2	59
141	Humus Forms in Mediterranean Scrublands with Aleppo Pine. Soil Science Society of America Journal, 2001, 65, 884-896.	1.2	41
142	Title is missing!. Plant and Soil, 2000, 225, 39-51.	1.8	94
143	Influence of site conditions on the survival of Fagus sylvatica seedlings in an oldâ \in growth beech forest loweral of Vegetation Science 2000, 11, 269, 274	1.1	34

144	Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. Biology and Fertility of Soils, 2000, 32, 508-522.	2.3	126

#	Article	IF	CITATIONS
145	Comment distinguer dysmoder et mor ? L'exemple de la forêt domaniale de Perche-Trappe (Orne) Revue Forestiere Francaise, 2000, , 23.	0.0	13
146	Comparative leaf decomposition within the holm oak complex. European Journal of Soil Biology, 2000, 36, 91-95.	1.4	5
147	Influence of holm oak leaf decomposition stage on the biology ofOnychiurus sinensis Stach (Collembola: Onychiuridae). European Journal of Soil Biology, 2000, 36, 97-105.	1.4	9
148	Interactions between earthworms, litter and trees in an old-growth beech forest. Biology and Fertility of Soils, 1999, 29, 360-370.	2.3	40
149	Horizons and Humus Forms in Beech Forests of the Belgian Ardennes. Soil Science Society of America Journal, 1999, 63, 1888-1901.	1.2	43
150	Distribution of Heteromurus nitidus (Hexapoda, Collembola) according to soil acidity: interactions with earthworms and predator pressure. Soil Biology and Biochemistry, 1999, 31, 1161-1170.	4.2	47
151	Impact of earthworms on the diversity of microarthropods in a vertisol (Martinique). Biology and Fertility of Soils, 1998, 27, 21-26.	2.3	72
152	Lumbricus terrestris L. distribution within an experimental humus mosaic in a mountain spruce forest. Biology and Fertility of Soils, 1998, 28, 81-86.	2.3	6
153	Influence of agricultural practices on arthropod communities in a vertisol (Martinique). European Journal of Soil Biology, 1998, 34, 157-165.	1.4	55
154	Diversity and dynamics of eco-units in the biological reserves of the Fontainebleau Forest (France): Contribution of soil biology to a functional approach. European Journal of Soil Biology, 1998, 34, 167-177.	1.4	19
155	Feeding preferences of the collembolan Onychiurus sinensis for fungi colonizing holm oak litter (Quercus rotundifolia Lam.). European Journal of Soil Biology, 1998, 34, 179-188.	1.4	41
156	Responses to light in a soil-dwelling springtail. European Journal of Soil Biology, 1998, 34, 199-201.	1.4	24
157	The Forest Regeneration Puzzle. BioScience, 1998, 48, 523-530.	2.2	95
158	Soil fauna and site assessment in beech stands of the Belgian Ardennes. Canadian Journal of Forest Research, 1997, 27, 2053-2064.	0.8	54
159	Establishment ofFagus sylvaticaandFraxinus excelsiorin an old-growth beech forest. Journal of Vegetation Science, 1997, 8, 13-20.	1.1	42
160	Growth ofFagus sylvaticasaplings in an old-growth forest as affected by soil and light conditions. Journal of Vegetation Science, 1997, 8, 789-796.	1.1	13
161	Classification of forest humus forms: a French proposal. Annales Des Sciences Forestières, 1995, 52, 535-546.	1.1	134
162	The heterogeneity of humus profiles and earthworm communities in a virgin beech forest. Biology and Fertility of Soils, 1995, 20, 24-32.	2.3	82

#	Article	IF	CITATIONS
163	Dynamics ofVaccinium myrtilluspatches in mountain spruce forest. Journal of Vegetation Science, 1995, 6, 343-348.	1.1	23
164	Humus form dynamics during the sylvogenetic cycle in a mountain spruce forest. Soil Biology and Biochemistry, 1994, 26, 183-220.	4.2	149
165	La régénération naturelle : connaissances actuelles. le cas de l'épicéa en forêt de macot (Savoie). Revue Forestiere Francaise, 1994, , 25.	0.0	15
166	Une classification morphologique et fonctionnelle des formes d'humus. propositions du référentiel pédologique 1992. Revue Forestiere Francaise, 1994, , 152.	0.0	7
167	Comparative study of soil organic layers in two bilberry-spruce forest stands (Vaccinio-Piceetea). Relation to forest dynamics. Geoderma, 1993, 59, 89-108.	2.3	36
168	Soil acidification under the crown of oak trees I. Spatial distribution. Forest Ecology and Management, 1991, 40, 221-232.	1.4	49
169	Reactions of the Macrofauna of a Forest Mull to Experimental Perturbations of Litter Supply. Oikos, 1991, 61, 316.	1.2	53
170	Food resources and diets of soil animals in a small area of Scots pine litter. Geoderma, 1991, 49, 33-62.	2.3	120
171	Succession of fungi and fauna during decomposition of needles in a small area of Scots pine litter. Plant and Soil, 1991, 138, 99-113.	1.8	108
172	Ecological study of a forest humus by observing a small volume I. Penetration of pine litter by mycorrhizal fungi. Forest Pathology, 1990, 20, 290-303.	0.5	40
173	Caractérisation des humus et des litières par la faune du sol. Intérêt sylvicole. Revue Forestiere Francaise, 1986, , 509.	0.0	11
174	Identification de deux espèces de rongeurs de Guyane française, Proechimys cuvieri et Proechimys guyannensis (Echimyidae) par l'analyse des correspondances. Mammalia, 1984, 48, .	0.3	6
175	Primate cranium morphology through ontogenesis and phylogenesis, factorial analysis of global variation. Journal of Human Evolution, 1979, 8, 233-234.	1.3	0