
Richard Kf Unsworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7198807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The biogeography of community assembly: latitude and predation drive variation in community trait distribution in a guild of epifaunal crustaceans. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20211762.	2.6	9
2	Dependence on seagrass fisheries governed by household income and adaptive capacity. Ocean and Coastal Management, 2022, 225, 106247.	4.4	7
3	Canopy Accumulation: Are Seagrass Meadows a Sink of Microplastics?. Oceans, 2021, 2, 162-178.	1.3	20
4	Consistency Is Critical for the Effective Use of Baited Remote Video. Oceans, 2021, 2, 215-232.	1.3	4
5	Historical Analysis Exposes Catastrophic Seagrass Loss for the United Kingdom. Frontiers in Plant Science, 2021, 12, 629962.	3.6	39
6	Seagrass Structural Traits Drive Fish Assemblages in Small-Scale Fisheries. Frontiers in Marine Science, 2021, 8, .	2.5	12
7	Unravelling the Spatial and Temporal Plasticity of Eelgrass Meadows. Frontiers in Plant Science, 2021, 12, 664523.	3.6	11
8	Citizen Science Driven Big Data Collection Requires Improved and Inclusive Societal Engagement. Frontiers in Marine Science, 2021, 8, .	2.5	7
9	Seagrass ecosystem contributions to people's quality of life in the Pacific Island Countries and Territories. Marine Pollution Bulletin, 2021, 167, 112307.	5.0	15
10	Seagrass ecosystems of the Pacific Island Countries and Territories: A global bright spot. Marine Pollution Bulletin, 2021, 167, 112308.	5.0	12
11	Seagrass Meadows Provide a Significant Resource in Support of Avifauna. Diversity, 2021, 13, 363.	1.7	7
12	Adaptive Resolution Imaging Sonar (ARIS) as a tool for marine fish identification. Fisheries Research, 2021, 243, 106092.	1.7	19
13	Improving benthic biodiversity assessments in turbid aquatic environments. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1379-1391.	2.0	2
14	Anthropogenic pressures and life history predict trajectories of seagrass meadow extent at a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	53
15	Coastal restoration success via emergent trait-mimicry is context dependent. Biological Conservation, 2021, 264, 109373.	4.1	15
16	Social-ecological drivers and dynamics of seagrass gleaning fisheries. Ambio, 2020, 49, 1271-1281.	5.5	18
17	The perverse fisheries consequences of mosquito net malaria prophylaxis in East Africa. Ambio, 2020, 49, 1257-1267.	5.5	13
18	Demersal Fish Assemblages in NE Atlantic Seagrass and Kelp. Diversity, 2020, 12, 366.	1.7	6

#	Article	IF	CITATIONS
19	A global review of green turtle diet: sea surface temperature as a potential driver of omnivory levels. Marine Biology, 2020, 167, 1.	1.5	56
20	Artificial Intelligence Meets Citizen Science to Supercharge Ecological Monitoring. Patterns, 2020, 1, 100109.	5.9	31
21	Mimicry of emergent traits amplifies coastal restoration success. Nature Communications, 2020, 11, 3668.	12.8	67
22	Seagrass Restoration Is Possible: Insights and Lessons From Australia and New Zealand. Frontiers in Marine Science, 2020, 7, .	2.5	83
23	The response of the seagrass Halodule wrightii Ascherson to environmental stressors. Estuarine, Coastal and Shelf Science, 2020, 238, 106693.	2.1	4
24	The global distribution of seagrass meadows. Environmental Research Letters, 2020, 15, 074041.	5.2	191
25	Too hot to handle: Unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Global Change Biology, 2020, 26, 3525-3538.	9.5	139
26	Climate drives the geography of marine consumption by changing predator communities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28160-28166.	7.1	29
27	The influence of bait on remote underwater video observations in shallow-water coastal environments associated with the North-Eastern Atlantic. PeerJ, 2020, 8, e9744.	2.0	7
28	Seagrass meadows support global fisheries production. Conservation Letters, 2019, 12, e12566.	5.7	202
29	A Systematic Review of How Multiple Stressors From an Extreme Event Drove Ecosystem-Wide Loss of Resilience in an Iconic Seagrass Community. Frontiers in Marine Science, 2019, 6, .	2.5	87
30	Sowing the Seeds of Seagrass Recovery Using Hessian Bags. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	35
31	Improving visual biodiversity assessments of motile fauna in turbid aquatic environments. Limnology and Oceanography: Methods, 2019, 17, 544-554.	2.0	9
32	Green turtle diet is dominated by seagrass in the Western Indian Ocean except amongst gravid females. Marine Biology, 2019, 166, 1.	1.5	20
33	Toward a Coordinated Global Observing System for Seagrasses and Marine Macroalgae. Frontiers in Marine Science, 2019, 6, .	2.5	123
34	Artisanal fish fences pose broad and unexpected threats to the tropical coastal seascape. Nature Communications, 2019, 10, 2100.	12.8	22
35	Salinity stress drives herbivory rates and selective grazing in subtidal seagrass communities. PLoS ONE, 2019, 14, e0214308.	2.5	8
36	Global challenges for seagrass conservation. Ambio, 2019, 48, 801-815.	5.5	215

#	Article	IF	CITATIONS
37	Indonesia's globally significant seagrass meadows are under widespread threat. Science of the Total Environment, 2018, 634, 279-286.	8.0	113
38	One hundred priority questions for landscape restoration in Europe. Biological Conservation, 2018, 221, 198-208.	4.1	58
39	The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles. Marine Pollution Bulletin, 2018, 134, 99-105.	5.0	28
40	Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere. Ecology, 2018, 99, 29-35.	3.2	70
41	Finding some seagrass optimism in Wales, the case of Zostera noltii. Marine Pollution Bulletin, 2018, 134, 216-222.	5.0	10
42	Clobal significance of seagrass fishery activity. Fish and Fisheries, 2018, 19, 399-412.	5.3	112
43	Crowdsourcing conservation: The role of citizen science in securing a future for seagrass. Marine Pollution Bulletin, 2018, 134, 210-215.	5.0	35
44	Reasons for seagrass optimism: Local ecological knowledge confirms presence of dugongs. Marine Pollution Bulletin, 2018, 134, 118-122.	5.0	17
45	A changing climate for seagrass conservation?. Current Biology, 2018, 28, R1229-R1232.	3.9	49
46	Blue Carbon Storage Capacity of Temperate Eelgrass (<scp><i>Zostera marina</i></scp>) Meadows. Global Biogeochemical Cycles, 2018, 32, 1457-1475.	4.9	130
47	Seagrass research in Southeast Asia. Botanica Marina, 2018, 61, 177-179.	1.2	11
48	Tracking Nitrogen Source Using δ15N Reveals Human and Agricultural Drivers of Seagrass Degradation across the British Isles. Frontiers in Plant Science, 2018, 9, 133.	3.6	32
49	Secret Gardens Under the Sea: What are Seagrass Meadows and Why are They Important?. Frontiers for Young Minds, 2018, 6, .	0.8	3
50	Light Stress Responses by the Eelgrass, Zostera marina (L). Frontiers in Environmental Science, 2018, 6,	3.3	35
51	New Tools to Identify the Location of Seagrass Meadows: Marine Grazers as Habitat Indicators. Frontiers in Marine Science, 2018, 5, .	2.5	28
52	Conservation Concerns of Small-Scale Fisheries: By-Catch Impacts of a Shrimp and Finfish Fishery in a Sri Lankan Lagoon. Frontiers in Marine Science, 2018, 5, .	2.5	22
53	Complex yet fauna-deficient seagrass ecosystems at risk in southern Myanmar. Botanica Marina, 2018, 61, 193-203.	1.2	6
54	Seagrass Dependent Artisanal Fisheries of Southeast Asia. , 2018, , 437-445.		1

4

#	Article	IF	CITATIONS
55	A call for seagrass protection. Science, 2018, 361, 446-448.	12.6	54
56	Seagrass meadows. Current Biology, 2017, 27, R443-R445.	3.9	15
57	Effects of dredging on critical ecological processes for marine invertebrates, seagrasses and macroalgae, and the potential for management with environmental windows using Western Australia as a case study. Ecological Indicators, 2017, 78, 229-242.	6.3	34
58	Belowground stressors and long-term seagrass declines in a historically degraded seagrass ecosystem after improved water quality. Scientific Reports, 2017, 7, 14469.	3.3	29
59	The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems–Âa review. Biological Reviews, 2017, 92, 1521-1538.	10.4	217
60	Rocking the Boat: Damage to Eelgrass by Swinging Boat Moorings. Frontiers in Plant Science, 2017, 8, 1309.	3.6	47
61	Habitat Configuration Alters Herbivory across the Tropical Seascape. Frontiers in Marine Science, 2017, 4, .	2.5	8
62	Seagrass meadows are threatened by expected loss of peatlands in Indonesia. Global Change Biology, 2016, 22, 2957-2958.	9.5	7
63	Photosynthetic response to globally increasing CO ₂ of coâ€occurring temperate seagrass species. Plant, Cell and Environment, 2016, 39, 1240-1250.	5.7	54
64	Strategies to enhance the resilience of the world's seagrass meadows. Journal of Applied Ecology, 2016, 53, 967-972.	4.0	59
65	The perilous state of seagrass in the British Isles. Royal Society Open Science, 2016, 3, 150596.	2.4	37
66	Comment on â€~Seagrass Viviparous Propagules as a Potential Long-Distance Dispersal Mechanism' by A. C. G. Thomson et al Estuaries and Coasts, 2016, 39, 290-293.	2.2	3
67	Seagrass Dependent Artisanal Fisheries of Southeast Asia. , 2016, , 1-9.		2
68	Assessing Fish and Motile Fauna around Offshore Windfarms Using Stereo Baited Video. PLoS ONE, 2016, 11, e0149701.	2.5	18
69	Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Global Change Biology, 2015, 21, 1463-1474.	9.5	227
70	Decreasing seagrass density negatively influences associated fauna. PeerJ, 2015, 3, e1053.	2.0	70
71	Strategy for assessing impacts in ephemeral tropical seagrasses. Marine Pollution Bulletin, 2015, 101, 594-599.	5.0	14
72	Motile fauna of sub-tidal Zostera marina meadows in England and Wales. Marine Biodiversity, 2015, 45, 647-654.	1.0	10

#	Article	IF	CITATIONS
73	An ecosystems perspective for food security in the Caribbean: Seagrass meadows in the Turks and Caicos Islands. Ecosystem Services, 2015, 11, 12-21.	5.4	31
74	A framework for the resilience of seagrass ecosystems. Marine Pollution Bulletin, 2015, 100, 34-46.	5.0	191
75	Biodiversity, ecosystem services, and the conservation of seagrass meadows. , 2014, , 95-130.		12
76	Valuing and Evaluating Marine Ecosystem Services: Putting the Right Price on Marine Environments?. Environment and Society: Advances in Research, 2014, 5, .	1.4	8
77	Atlantic Cod (Gadus morhua) benefits from the availability of seagrass (Zostera marina) nursery habitat. Global Ecology and Conservation, 2014, 2, 367-377.	2.1	64
78	Food supply depends on seagrass meadows in the coral triangle. Environmental Research Letters, 2014, 9, 094005.	5.2	57
79	Optimising stereo baited underwater video for sampling fish and invertebrates in temperate coastal habitats. Estuarine, Coastal and Shelf Science, 2014, 150, 281-287.	2.1	48
80	Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. Journal of Ecology, 2014, 102, 1528-1536.	4.0	104
81	Disturbance influences the invasion of a seagrass into an existing meadow. Marine Pollution Bulletin, 2014, 86, 186-196.	5.0	15
82	Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Marine Pollution Bulletin, 2014, 83, 425-429.	5.0	103
83	Seagrass meadows in a globally changing environment. Marine Pollution Bulletin, 2014, 83, 383-386.	5.0	58
84	Seagrass meadows globally as a coupled social–ecological system: Implications for human wellbeing. Marine Pollution Bulletin, 2014, 83, 387-397.	5.0	201
85	Seagrass Meadows, Ecosystem Services, and Sustainability. Environment, 2013, 55, 14-28.	1.4	91
86	Science behind management of Shark Bay and Florida Bay, two P-limited subtropical systems with different climatology and human pressures. Marine and Freshwater Research, 2012, 63, 941.	1.3	33
87	An inter-specific behavioural association between a highfin grouper (Epinephelus maculatus) and a reef octopus (Octopus cyanea). Marine Biodiversity Records, 2012, 5, .	1.2	3
88	Nutrient status of seagrasses cannot be inferred from system-scale distribution of phosphorus in Shark Bay, Western Australia. Marine and Freshwater Research, 2012, 63, 1015.	1.3	21
89	Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification. Environmental Research Letters, 2012, 7, 024026.	5.2	159
90	Solar Radiation and Tidal Exposure as Environmental Drivers of Enhalus acoroides Dominated Seagrass Meadows. PLoS ONE, 2012, 7, e34133.	2.5	32

#	Article	IF	CITATIONS
91	Seasonal Rainfall and Runoff Promote Coral Disease on an Inshore Reef. PLoS ONE, 2011, 6, e16893.	2.5	117
92	Long-term climate-associated dynamics of a tropical seagrass meadow: implications for the future. Marine Ecology - Progress Series, 2011, 422, 93-103.	1.9	95
93	Ensuring appropriate and proportionate responses to environmental threats: A response to Caras and Pasternak. Ocean and Coastal Management, 2010, 53, 700-702.	4.4	3
94	Economic and subsistence values of the standing stocks of seagrass fisheries: Potential benefits of no-fishing marine protected area management. Ocean and Coastal Management, 2010, 53, 218-224.	4.4	64
95	Recognising the necessity for Indoâ€Pacific seagrass conservation. Conservation Letters, 2010, 3, 63-73.	5.7	194
96	Development of water quality thresholds during dredging for the protection of benthic primary producer habitats. Journal of Environmental Monitoring, 2010, 12, 159-163.	2.1	12
97	Structuring of Indo-Pacific fish assemblages along the mangrove–seagrass continuum. Aquatic Biology, 2009, 5, 85-95.	1.4	67
98	Spatio-temporal coral disease dynamics in the Wakatobi Marine National Park, South-East Sulawesi, Indonesia. Diseases of Aquatic Organisms, 2009, 87, 105-115.	1.0	50
99	High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Marine Ecology - Progress Series, 2008, 353, 213-224.	1.9	164
100	Tidal fish connectivity of reef and sea grass habitats in the Indo-Pacific. Journal of the Marine Biological Association of the United Kingdom, 2007, 87, 1287-1296.	0.8	57
101	Faunal relationships with seagrass habitat structure: a case study using shrimp from the Indo-Pacific. Marine and Freshwater Research, 2007, 58, 1008.	1.3	26
102	Diel trophic structuring of seagrass bed fish assemblages in the Wakatobi Marine National Park, Indonesia. Estuarine, Coastal and Shelf Science, 2007, 72, 81-88.	2.1	83
103	The contribution of scarid herbivory to seagrass ecosystem dynamics in the Indo-Pacific. Estuarine, Coastal and Shelf Science, 2007, 74, 53-62.	2.1	50
104	The ecology of Indo-Pacific grouper (Serranidae) species and the effects of a small scale no take area on grouper assemblage, abundance and size frequency distribution. Marine Biology, 2007, 152, 243-254.	1.5	32
105	Coupled Social-Ecological Systems: Insights from Seagrass Meadows in the Turks and Caicos Islands. , 0, , 392-415.		1